wolfSSL and wolfCrypt 4.0.0 and earlier (when configured without --enable-fpecc, --enable-sp, or --enable-sp-math) contain a timing side channel in ECDSA signature generation. This allows a local attacker, able to precisely measure the duration of signature operations, to infer information about the nonces used and potentially mount a lattice attack to recover the private key used. The issue occurs because ecc.c scalar multiplication might leak the bit length.
In wolfSSL through 4.1.0, there is a missing sanity check of memory accesses in parsing ASN.1 certificate data while handshaking. Specifically, there is a one-byte heap-based buffer over-read in CheckCertSignature_ex in wolfcrypt/src/asn.c.
It was found that wolfssl before 3.15.7 is vulnerable to a new variant of the Bleichenbacher attack to perform downgrade attacks against TLS. This may lead to leakage of sensible data.
wolfcrypt/src/ecc.c in wolfSSL before 3.15.1.patch allows a memory-cache side-channel attack on ECDSA signatures, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host.
wolfSSL prior to version 3.12.2 provides a weak Bleichenbacher oracle when any TLS cipher suite using RSA key exchange is negotiated. An attacker can recover the private key from a vulnerable wolfSSL application. This vulnerability is referred to as "ROBOT."
CyaSSL does not check the key usage extension in leaf certificates, which allows remote attackers to spoof servers via a crafted server certificate not authorized for use in an SSL/TLS handshake.