In the Linux kernel, the following vulnerability has been resolved:
media: solo6x10: fix possible memory leak in solo_sysfs_init()
If device_register() returns error in solo_sysfs_init(), the
name allocated by dev_set_name() need be freed. As comment of
device_register() says, it should use put_device() to give up
the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
vme: Fix error not catched in fake_init()
In fake_init(), __root_device_register() is possible to fail but it's
ignored, which can cause unregistering vme_root fail when exit.
general protection fault,
probably for non-canonical address 0xdffffc000000008c
KASAN: null-ptr-deref in range [0x0000000000000460-0x0000000000000467]
RIP: 0010:root_device_unregister+0x26/0x60
Call Trace:
<TASK>
__x64_sys_delete_module+0x34f/0x540
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Return error when __root_device_register() fails.
In the Linux kernel, the following vulnerability has been resolved:
ARM: OMAP2+: omap4-common: Fix refcount leak bug
In omap4_sram_init(), of_find_compatible_node() will return a node
pointer with refcount incremented. We should use of_node_put() when
it is not used anymore.
In the Linux kernel, the following vulnerability has been resolved:
media: si470x: Fix use-after-free in si470x_int_in_callback()
syzbot reported use-after-free in si470x_int_in_callback() [1]. This
indicates that urb->context, which contains struct si470x_device
object, is freed when si470x_int_in_callback() is called.
The cause of this issue is that si470x_int_in_callback() is called for
freed urb.
si470x_usb_driver_probe() calls si470x_start_usb(), which then calls
usb_submit_urb() and si470x_start(). If si470x_start_usb() fails,
si470x_usb_driver_probe() doesn't kill urb, but it just frees struct
si470x_device object, as depicted below:
si470x_usb_driver_probe()
...
si470x_start_usb()
...
usb_submit_urb()
retval = si470x_start()
return retval
if (retval < 0)
free struct si470x_device object, but don't kill urb
This patch fixes this issue by killing urb when si470x_start_usb()
fails and urb is submitted. If si470x_start_usb() fails and urb is
not submitted, i.e. submitting usb fails, it just frees struct
si470x_device object.
In the Linux kernel, the following vulnerability has been resolved:
usb: host: xhci: Fix potential memory leak in xhci_alloc_stream_info()
xhci_alloc_stream_info() allocates stream context array for stream_info
->stream_ctx_array with xhci_alloc_stream_ctx(). When some error occurs,
stream_info->stream_ctx_array is not released, which will lead to a
memory leak.
We can fix it by releasing the stream_info->stream_ctx_array with
xhci_free_stream_ctx() on the error path to avoid the potential memory
leak.
In the Linux kernel, the following vulnerability has been resolved:
r6040: Fix kmemleak in probe and remove
There is a memory leaks reported by kmemleak:
unreferenced object 0xffff888116111000 (size 2048):
comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s)
hex dump (first 32 bytes):
00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................
08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff815bcd82>] kmalloc_trace+0x22/0x60
[<ffffffff827e20ee>] phy_device_create+0x4e/0x90
[<ffffffff827e6072>] get_phy_device+0xd2/0x220
[<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0
[<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0
[<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040]
...
The problem occurs in probe process as follows:
r6040_init_one:
mdiobus_register
mdiobus_scan <- alloc and register phy_device,
the reference count of phy_device is 3
r6040_mii_probe
phy_connect <- connect to the first phy_device,
so the reference count of the first
phy_device is 4, others are 3
register_netdev <- fault inject succeeded, goto error handling path
// error handling path
err_out_mdio_unregister:
mdiobus_unregister(lp->mii_bus);
err_out_mdio:
mdiobus_free(lp->mii_bus); <- the reference count of the first
phy_device is 1, it is not released
and other phy_devices are released
// similarly, the remove process also has the same problem
The root cause is traced to the phy_device is not disconnected when
removes one r6040 device in r6040_remove_one() or on error handling path
after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet
device is connected to the first PHY device of mii_bus, in order to
notify the connected driver when the link status changes, which is the
default behavior of the PHY infrastructure to handle everything.
Therefore the phy_device should be disconnected when removes one r6040
device or on error handling path.
Fix it by adding phy_disconnect() when removes one r6040 device or on
error handling path after r6040_mii probed successfully.
In the Linux kernel, the following vulnerability has been resolved:
mcb: mcb-parse: fix error handing in chameleon_parse_gdd()
If mcb_device_register() returns error in chameleon_parse_gdd(), the refcount
of bus and device name are leaked. Fix this by calling put_device() to give up
the reference, so they can be released in mcb_release_dev() and kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
clk: rockchip: Fix memory leak in rockchip_clk_register_pll()
If clk_register() fails, @pll->rate_table may have allocated memory by
kmemdup(), so it needs to be freed, otherwise will cause memory leak
issue, this patch fixes it.
In the Linux kernel, the following vulnerability has been resolved:
iommu/fsl_pamu: Fix resource leak in fsl_pamu_probe()
The fsl_pamu_probe() returns directly when create_csd() failed, leaving
irq and memories unreleased.
Fix by jumping to error if create_csd() returns error.