Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 6.6.48  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_tagged_fifo Prevent st_lsm6dsx_read_tagged_fifo from falling in an infinite loop in case pattern_len is equal to zero and the device FIFO is not empty.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: iio: imu: st_lsm6dsx: fix possible lockup in st_lsm6dsx_read_fifo Prevent st_lsm6dsx_read_fifo from falling in an infinite loop in case pattern_len is equal to zero and the device FIFO is not empty.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: Input: mtk-pmic-keys - fix possible null pointer dereference In mtk_pmic_keys_probe, the regs parameter is only set if the button is parsed in the device tree. However, on hardware where the button is left floating, that node will most likely be removed not to enable that input. In that case the code will try to dereference a null pointer. Let's use the regs struct instead as it is defined for all supported platforms. Note that it is ok setting the key reg even if that latter is disabled as the interrupt won't be enabled anyway.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix out-of-bounds access during multi-link element defragmentation Currently during the multi-link element defragmentation process, the multi-link element length added to the total IEs length when calculating the length of remaining IEs after the multi-link element in cfg80211_defrag_mle(). This could lead to out-of-bounds access if the multi-link element or its corresponding fragment elements are the last elements in the IEs buffer. To address this issue, correctly calculate the remaining IEs length by deducting the multi-link element end offset from total IEs end offset.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: fix dereferencing invalid pmd migration entry When migrating a THP, concurrent access to the PMD migration entry during a deferred split scan can lead to an invalid address access, as illustrated below. To prevent this invalid access, it is necessary to check the PMD migration entry and return early. In this context, there is no need to use pmd_to_swp_entry and pfn_swap_entry_to_page to verify the equality of the target folio. Since the PMD migration entry is locked, it cannot be served as the target. Mailing list discussion and explanation from Hugh Dickins: "An anon_vma lookup points to a location which may contain the folio of interest, but might instead contain another folio: and weeding out those other folios is precisely what the "folio != pmd_folio((*pmd)" check (and the "risk of replacing the wrong folio" comment a few lines above it) is for." BUG: unable to handle page fault for address: ffffea60001db008 CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60 Call Trace: <TASK> try_to_migrate_one+0x28c/0x3730 rmap_walk_anon+0x4f6/0x770 unmap_folio+0x196/0x1f0 split_huge_page_to_list_to_order+0x9f6/0x1560 deferred_split_scan+0xac5/0x12a0 shrinker_debugfs_scan_write+0x376/0x470 full_proxy_write+0x15c/0x220 vfs_write+0x2fc/0xcb0 ksys_write+0x146/0x250 do_syscall_64+0x6a/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e The bug is found by syzkaller on an internal kernel, then confirmed on upstream.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: bpf: Scrub packet on bpf_redirect_peer When bpf_redirect_peer is used to redirect packets to a device in another network namespace, the skb isn't scrubbed. That can lead skb information from one namespace to be "misused" in another namespace. As one example, this is causing Cilium to drop traffic when using bpf_redirect_peer to redirect packets that just went through IPsec decryption to a container namespace. The following pwru trace shows (1) the packet path from the host's XFRM layer to the container's XFRM layer where it's dropped and (2) the number of active skb extensions at each function. NETNS MARK IFACE TUPLE FUNC 4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 xfrm_rcv_cb .active_extensions = (__u8)2, 4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 xfrm4_rcv_cb .active_extensions = (__u8)2, 4026533547 d00 eth0 10.244.3.124:35473->10.244.2.158:53 gro_cells_receive .active_extensions = (__u8)2, [...] 4026533547 0 eth0 10.244.3.124:35473->10.244.2.158:53 skb_do_redirect .active_extensions = (__u8)2, 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 ip_rcv .active_extensions = (__u8)2, 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 ip_rcv_core .active_extensions = (__u8)2, [...] 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 udp_queue_rcv_one_skb .active_extensions = (__u8)2, 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 __xfrm_policy_check .active_extensions = (__u8)2, 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 __xfrm_decode_session .active_extensions = (__u8)2, 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 security_xfrm_decode_session .active_extensions = (__u8)2, 4026534999 0 eth0 10.244.3.124:35473->10.244.2.158:53 kfree_skb_reason(SKB_DROP_REASON_XFRM_POLICY) .active_extensions = (__u8)2, In this case, there are no XFRM policies in the container's network namespace so the drop is unexpected. When we decrypt the IPsec packet, the XFRM state used for decryption is set in the skb extensions. This information is preserved across the netns switch. When we reach the XFRM policy check in the container's netns, __xfrm_policy_check drops the packet with LINUX_MIB_XFRMINNOPOLS because a (container-side) XFRM policy can't be found that matches the (host-side) XFRM state used for decryption. This patch fixes this by scrubbing the packet when using bpf_redirect_peer, as is done on typical netns switches via veth devices except skb->mark and skb->tstamp are not zeroed.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: memblock: Accept allocated memory before use in memblock_double_array() When increasing the array size in memblock_double_array() and the slab is not yet available, a call to memblock_find_in_range() is used to reserve/allocate memory. However, the range returned may not have been accepted, which can result in a crash when booting an SNP guest: RIP: 0010:memcpy_orig+0x68/0x130 Code: ... RSP: 0000:ffffffff9cc03ce8 EFLAGS: 00010006 RAX: ff11001ff83e5000 RBX: 0000000000000000 RCX: fffffffffffff000 RDX: 0000000000000bc0 RSI: ffffffff9dba8860 RDI: ff11001ff83e5c00 RBP: 0000000000002000 R08: 0000000000000000 R09: 0000000000002000 R10: 000000207fffe000 R11: 0000040000000000 R12: ffffffff9d06ef78 R13: ff11001ff83e5000 R14: ffffffff9dba7c60 R15: 0000000000000c00 memblock_double_array+0xff/0x310 memblock_add_range+0x1fb/0x2f0 memblock_reserve+0x4f/0xa0 memblock_alloc_range_nid+0xac/0x130 memblock_alloc_internal+0x53/0xc0 memblock_alloc_try_nid+0x3d/0xa0 swiotlb_init_remap+0x149/0x2f0 mem_init+0xb/0xb0 mm_core_init+0x8f/0x350 start_kernel+0x17e/0x5d0 x86_64_start_reservations+0x14/0x30 x86_64_start_kernel+0x92/0xa0 secondary_startup_64_no_verify+0x194/0x19b Mitigate this by calling accept_memory() on the memory range returned before the slab is available. Prior to v6.12, the accept_memory() interface used a 'start' and 'end' parameter instead of 'start' and 'size', therefore the accept_memory() call must be adjusted to specify 'start + size' for 'end' when applying to kernels prior to v6.12.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: ipvs: fix uninit-value for saddr in do_output_route4 syzbot reports for uninit-value for the saddr argument [1]. commit 4754957f04f5 ("ipvs: do not use random local source address for tunnels") already implies that the input value of saddr should be ignored but the code is still reading it which can prevent to connect the route. Fix it by changing the argument to ret_saddr. [1] BUG: KMSAN: uninit-value in do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147 do_output_route4+0x42c/0x4d0 net/netfilter/ipvs/ip_vs_xmit.c:147 __ip_vs_get_out_rt+0x403/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:330 ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136 ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] __ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118 ip_local_out net/ipv4/ip_output.c:127 [inline] ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501 udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195 udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483 inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x267/0x380 net/socket.c:727 ____sys_sendmsg+0x91b/0xda0 net/socket.c:2566 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620 __sys_sendmmsg+0x41d/0x880 net/socket.c:2702 __compat_sys_sendmmsg net/compat.c:360 [inline] __do_compat_sys_sendmmsg net/compat.c:367 [inline] __se_compat_sys_sendmmsg net/compat.c:364 [inline] __ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364 ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] __do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306 do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369 entry_SYSENTER_compat_after_hwframe+0x84/0x8e Uninit was created at: slab_post_alloc_hook mm/slub.c:4167 [inline] slab_alloc_node mm/slub.c:4210 [inline] __kmalloc_cache_noprof+0x8fa/0xe00 mm/slub.c:4367 kmalloc_noprof include/linux/slab.h:905 [inline] ip_vs_dest_dst_alloc net/netfilter/ipvs/ip_vs_xmit.c:61 [inline] __ip_vs_get_out_rt+0x35d/0x21d0 net/netfilter/ipvs/ip_vs_xmit.c:323 ip_vs_tunnel_xmit+0x205/0x2380 net/netfilter/ipvs/ip_vs_xmit.c:1136 ip_vs_in_hook+0x1aa5/0x35b0 net/netfilter/ipvs/ip_vs_core.c:2063 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xf7/0x400 net/netfilter/core.c:626 nf_hook include/linux/netfilter.h:269 [inline] __ip_local_out+0x758/0x7e0 net/ipv4/ip_output.c:118 ip_local_out net/ipv4/ip_output.c:127 [inline] ip_send_skb+0x6a/0x3c0 net/ipv4/ip_output.c:1501 udp_send_skb+0xfda/0x1b70 net/ipv4/udp.c:1195 udp_sendmsg+0x2fe3/0x33c0 net/ipv4/udp.c:1483 inet_sendmsg+0x1fc/0x280 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x267/0x380 net/socket.c:727 ____sys_sendmsg+0x91b/0xda0 net/socket.c:2566 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2620 __sys_sendmmsg+0x41d/0x880 net/socket.c:2702 __compat_sys_sendmmsg net/compat.c:360 [inline] __do_compat_sys_sendmmsg net/compat.c:367 [inline] __se_compat_sys_sendmmsg net/compat.c:364 [inline] __ia32_compat_sys_sendmmsg+0xc8/0x140 net/compat.c:364 ia32_sys_call+0x3ffa/0x41f0 arch/x86/include/generated/asm/syscalls_32.h:346 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] __do_fast_syscall_32+0xb0/0x110 arch/x86/entry/syscall_32.c:306 do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:369 entry_SYSENTER_compat_after_hwframe+0x84/0x8e CPU: 0 UID: 0 PID: 22408 Comm: syz.4.5165 Not tainted 6.15.0-rc3-syzkaller-00019-gbc3372351d0c #0 PREEMPT(undef) Hardware name: Google Google Compute Engi ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: arm64: bpf: Only mitigate cBPF programs loaded by unprivileged users Support for eBPF programs loaded by unprivileged users is typically disabled. This means only cBPF programs need to be mitigated for BHB. In addition, only mitigate cBPF programs that were loaded by an unprivileged user. Privileged users can also load the same program via eBPF, making the mitigation pointless.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Add job to pending list if the reset was skipped When a CL/CSD job times out, we check if the GPU has made any progress since the last timeout. If so, instead of resetting the hardware, we skip the reset and let the timer get rearmed. This gives long-running jobs a chance to complete. However, when `timedout_job()` is called, the job in question is removed from the pending list, which means it won't be automatically freed through `free_job()`. Consequently, when we skip the reset and keep the job running, the job won't be freed when it finally completes. This situation leads to a memory leak, as exposed in [1] and [2]. Similarly to commit 704d3d60fec4 ("drm/etnaviv: don't block scheduler when GPU is still active"), this patch ensures the job is put back on the pending list when extending the timeout.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-20


Contact Us

Shodan ® - All rights reserved