In the Linux kernel, the following vulnerability has been resolved:
xen/events: close evtchn after mapping cleanup
shutdown_pirq and startup_pirq are not taking the
irq_mapping_update_lock because they can't due to lock inversion. Both
are called with the irq_desc->lock being taking. The lock order,
however, is first irq_mapping_update_lock and then irq_desc->lock.
This opens multiple races:
- shutdown_pirq can be interrupted by a function that allocates an event
channel:
CPU0 CPU1
shutdown_pirq {
xen_evtchn_close(e)
__startup_pirq {
EVTCHNOP_bind_pirq
-> returns just freed evtchn e
set_evtchn_to_irq(e, irq)
}
xen_irq_info_cleanup() {
set_evtchn_to_irq(e, -1)
}
}
Assume here event channel e refers here to the same event channel
number.
After this race the evtchn_to_irq mapping for e is invalid (-1).
- __startup_pirq races with __unbind_from_irq in a similar way. Because
__startup_pirq doesn't take irq_mapping_update_lock it can grab the
evtchn that __unbind_from_irq is currently freeing and cleaning up. In
this case even though the event channel is allocated, its mapping can
be unset in evtchn_to_irq.
The fix is to first cleanup the mappings and then close the event
channel. In this way, when an event channel gets allocated it's
potential previous evtchn_to_irq mappings are guaranteed to be unset already.
This is also the reverse order of the allocation where first the event
channel is allocated and then the mappings are setup.
On a 5.10 kernel prior to commit 3fcdaf3d7634 ("xen/events: modify internal
[un]bind interfaces"), we hit a BUG like the following during probing of NVMe
devices. The issue is that during nvme_setup_io_queues, pci_free_irq
is called for every device which results in a call to shutdown_pirq.
With many nvme devices it's therefore likely to hit this race during
boot because there will be multiple calls to shutdown_pirq and
startup_pirq are running potentially in parallel.
------------[ cut here ]------------
blkfront: xvda: barrier or flush: disabled; persistent grants: enabled; indirect descriptors: enabled; bounce buffer: enabled
kernel BUG at drivers/xen/events/events_base.c:499!
invalid opcode: 0000 [#1] SMP PTI
CPU: 44 PID: 375 Comm: kworker/u257:23 Not tainted 5.10.201-191.748.amzn2.x86_64 #1
Hardware name: Xen HVM domU, BIOS 4.11.amazon 08/24/2006
Workqueue: nvme-reset-wq nvme_reset_work
RIP: 0010:bind_evtchn_to_cpu+0xdf/0xf0
Code: 5d 41 5e c3 cc cc cc cc 44 89 f7 e8 2b 55 ad ff 49 89 c5 48 85 c0 0f 84 64 ff ff ff 4c 8b 68 30 41 83 fe ff 0f 85 60 ff ff ff <0f> 0b 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 0f 1f 44 00 00
RSP: 0000:ffffc9000d533b08 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006
RDX: 0000000000000028 RSI: 00000000ffffffff RDI: 00000000ffffffff
RBP: ffff888107419680 R08: 0000000000000000 R09: ffffffff82d72b00
R10: 0000000000000000 R11: 0000000000000000 R12: 00000000000001ed
R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000002
FS: 0000000000000000(0000) GS:ffff88bc8b500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000002610001 CR4: 00000000001706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? show_trace_log_lvl+0x1c1/0x2d9
? show_trace_log_lvl+0x1c1/0x2d9
? set_affinity_irq+0xdc/0x1c0
? __die_body.cold+0x8/0xd
? die+0x2b/0x50
? do_trap+0x90/0x110
? bind_evtchn_to_cpu+0xdf/0xf0
? do_error_trap+0x65/0x80
? bind_evtchn_to_cpu+0xdf/0xf0
? exc_invalid_op+0x4e/0x70
? bind_evtchn_to_cpu+0xdf/0xf0
? asm_exc_invalid_op+0x12/0x20
? bind_evtchn_to_cpu+0xdf/0x
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ceph: prevent use-after-free in encode_cap_msg()
In fs/ceph/caps.c, in encode_cap_msg(), "use after free" error was
caught by KASAN at this line - 'ceph_buffer_get(arg->xattr_buf);'. This
implies before the refcount could be increment here, it was freed.
In same file, in "handle_cap_grant()" refcount is decremented by this
line - 'ceph_buffer_put(ci->i_xattrs.blob);'. It appears that a race
occurred and resource was freed by the latter line before the former
line could increment it.
encode_cap_msg() is called by __send_cap() and __send_cap() is called by
ceph_check_caps() after calling __prep_cap(). __prep_cap() is where
arg->xattr_buf is assigned to ci->i_xattrs.blob. This is the spot where
the refcount must be increased to prevent "use after free" error.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix hang in nilfs_lookup_dirty_data_buffers()
Syzbot reported a hang issue in migrate_pages_batch() called by mbind()
and nilfs_lookup_dirty_data_buffers() called in the log writer of nilfs2.
While migrate_pages_batch() locks a folio and waits for the writeback to
complete, the log writer thread that should bring the writeback to
completion picks up the folio being written back in
nilfs_lookup_dirty_data_buffers() that it calls for subsequent log
creation and was trying to lock the folio. Thus causing a deadlock.
In the first place, it is unexpected that folios/pages in the middle of
writeback will be updated and become dirty. Nilfs2 adds a checksum to
verify the validity of the log being written and uses it for recovery at
mount, so data changes during writeback are suppressed. Since this is
broken, an unclean shutdown could potentially cause recovery to fail.
Investigation revealed that the root cause is that the wait for writeback
completion in nilfs_page_mkwrite() is conditional, and if the backing
device does not require stable writes, data may be modified without
waiting.
Fix these issues by making nilfs_page_mkwrite() wait for writeback to
finish regardless of the stable write requirement of the backing device.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix data corruption in dsync block recovery for small block sizes
The helper function nilfs_recovery_copy_block() of
nilfs_recovery_dsync_blocks(), which recovers data from logs created by
data sync writes during a mount after an unclean shutdown, incorrectly
calculates the on-page offset when copying repair data to the file's page
cache. In environments where the block size is smaller than the page
size, this flaw can cause data corruption and leak uninitialized memory
bytes during the recovery process.
Fix these issues by correcting this byte offset calculation on the page.
In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Fix race condition between netvsc_probe and netvsc_remove
In commit ac5047671758 ("hv_netvsc: Disable NAPI before closing the
VMBus channel"), napi_disable was getting called for all channels,
including all subchannels without confirming if they are enabled or not.
This caused hv_netvsc getting hung at napi_disable, when netvsc_probe()
has finished running but nvdev->subchan_work has not started yet.
netvsc_subchan_work() -> rndis_set_subchannel() has not created the
sub-channels and because of that netvsc_sc_open() is not running.
netvsc_remove() calls cancel_work_sync(&nvdev->subchan_work), for which
netvsc_subchan_work did not run.
netif_napi_add() sets the bit NAPI_STATE_SCHED because it ensures NAPI
cannot be scheduled. Then netvsc_sc_open() -> napi_enable will clear the
NAPIF_STATE_SCHED bit, so it can be scheduled. napi_disable() does the
opposite.
Now during netvsc_device_remove(), when napi_disable is called for those
subchannels, napi_disable gets stuck on infinite msleep.
This fix addresses this problem by ensuring that napi_disable() is not
getting called for non-enabled NAPI struct.
But netif_napi_del() is still necessary for these non-enabled NAPI struct
for cleanup purpose.
Call trace:
[ 654.559417] task:modprobe state:D stack: 0 pid: 2321 ppid: 1091 flags:0x00004002
[ 654.568030] Call Trace:
[ 654.571221] <TASK>
[ 654.573790] __schedule+0x2d6/0x960
[ 654.577733] schedule+0x69/0xf0
[ 654.581214] schedule_timeout+0x87/0x140
[ 654.585463] ? __bpf_trace_tick_stop+0x20/0x20
[ 654.590291] msleep+0x2d/0x40
[ 654.593625] napi_disable+0x2b/0x80
[ 654.597437] netvsc_device_remove+0x8a/0x1f0 [hv_netvsc]
[ 654.603935] rndis_filter_device_remove+0x194/0x1c0 [hv_netvsc]
[ 654.611101] ? do_wait_intr+0xb0/0xb0
[ 654.615753] netvsc_remove+0x7c/0x120 [hv_netvsc]
[ 654.621675] vmbus_remove+0x27/0x40 [hv_vmbus]