In the Linux kernel, the following vulnerability has been resolved:
ACPI: CPPC: Fix NULL pointer dereference when nosmp is used
With nosmp in cmdline, other CPUs are not brought up, leaving
their cpc_desc_ptr NULL. CPU0's iteration via for_each_possible_cpu()
dereferences these NULL pointers, causing panic.
Panic backtrace:
[ 0.401123] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000b8
...
[ 0.403255] [<ffffffff809a5818>] cppc_allow_fast_switch+0x6a/0xd4
...
Kernel panic - not syncing: Attempted to kill init!
[ rjw: New subject ]
In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: fix a potential crash on gso_skb handling
SFQ has an assumption of always being able to queue at least one packet.
However, after the blamed commit, sch->q.len can be inflated by packets
in sch->gso_skb, and an enqueue() on an empty SFQ qdisc can be followed
by an immediate drop.
Fix sfq_drop() to properly clear q->tail in this situation.
ip netns add lb
ip link add dev to-lb type veth peer name in-lb netns lb
ethtool -K to-lb tso off # force qdisc to requeue gso_skb
ip netns exec lb ethtool -K in-lb gro on # enable NAPI
ip link set dev to-lb up
ip -netns lb link set dev in-lb up
ip addr add dev to-lb 192.168.20.1/24
ip -netns lb addr add dev in-lb 192.168.20.2/24
tc qdisc replace dev to-lb root sfq limit 100
ip netns exec lb netserver
netperf -H 192.168.20.2 -l 100 &
netperf -H 192.168.20.2 -l 100 &
netperf -H 192.168.20.2 -l 100 &
netperf -H 192.168.20.2 -l 100 &
In the Linux kernel, the following vulnerability has been resolved:
scsi: core: ufs: Fix a hang in the error handler
ufshcd_err_handling_prepare() calls ufshcd_rpm_get_sync(). The latter
function can only succeed if UFSHCD_EH_IN_PROGRESS is not set because
resuming involves submitting a SCSI command and ufshcd_queuecommand()
returns SCSI_MLQUEUE_HOST_BUSY if UFSHCD_EH_IN_PROGRESS is set. Fix this
hang by setting UFSHCD_EH_IN_PROGRESS after ufshcd_rpm_get_sync() has
been called instead of before.
Backtrace:
__switch_to+0x174/0x338
__schedule+0x600/0x9e4
schedule+0x7c/0xe8
schedule_timeout+0xa4/0x1c8
io_schedule_timeout+0x48/0x70
wait_for_common_io+0xa8/0x160 //waiting on START_STOP
wait_for_completion_io_timeout+0x10/0x20
blk_execute_rq+0xe4/0x1e4
scsi_execute_cmd+0x108/0x244
ufshcd_set_dev_pwr_mode+0xe8/0x250
__ufshcd_wl_resume+0x94/0x354
ufshcd_wl_runtime_resume+0x3c/0x174
scsi_runtime_resume+0x64/0xa4
rpm_resume+0x15c/0xa1c
__pm_runtime_resume+0x4c/0x90 // Runtime resume ongoing
ufshcd_err_handler+0x1a0/0xd08
process_one_work+0x174/0x808
worker_thread+0x15c/0x490
kthread+0xf4/0x1ec
ret_from_fork+0x10/0x20
[ bvanassche: rewrote patch description ]
In the Linux kernel, the following vulnerability has been resolved:
net_sched: ets: fix a race in ets_qdisc_change()
Gerrard Tai reported a race condition in ETS, whenever SFQ perturb timer
fires at the wrong time.
The race is as follows:
CPU 0 CPU 1
[1]: lock root
[2]: qdisc_tree_flush_backlog()
[3]: unlock root
|
| [5]: lock root
| [6]: rehash
| [7]: qdisc_tree_reduce_backlog()
|
[4]: qdisc_put()
This can be abused to underflow a parent's qlen.
Calling qdisc_purge_queue() instead of qdisc_tree_flush_backlog()
should fix the race, because all packets will be purged from the qdisc
before releasing the lock.
In the Linux kernel, the following vulnerability has been resolved:
net_sched: red: fix a race in __red_change()
Gerrard Tai reported a race condition in RED, whenever SFQ perturb timer
fires at the wrong time.
The race is as follows:
CPU 0 CPU 1
[1]: lock root
[2]: qdisc_tree_flush_backlog()
[3]: unlock root
|
| [5]: lock root
| [6]: rehash
| [7]: qdisc_tree_reduce_backlog()
|
[4]: qdisc_put()
This can be abused to underflow a parent's qlen.
Calling qdisc_purge_queue() instead of qdisc_tree_flush_backlog()
should fix the race, because all packets will be purged from the qdisc
before releasing the lock.
In the Linux kernel, the following vulnerability has been resolved:
net/mdiobus: Fix potential out-of-bounds read/write access
When using publicly available tools like 'mdio-tools' to read/write data
from/to network interface and its PHY via mdiobus, there is no verification of
parameters passed to the ioctl and it accepts any mdio address.
Currently there is support for 32 addresses in kernel via PHY_MAX_ADDR define,
but it is possible to pass higher value than that via ioctl.
While read/write operation should generally fail in this case,
mdiobus provides stats array, where wrong address may allow out-of-bounds
read/write.
Fix that by adding address verification before read/write operation.
While this excludes this access from any statistics, it improves security of
read/write operation.
In the Linux kernel, the following vulnerability has been resolved:
net: Fix TOCTOU issue in sk_is_readable()
sk->sk_prot->sock_is_readable is a valid function pointer when sk resides
in a sockmap. After the last sk_psock_put() (which usually happens when
socket is removed from sockmap), sk->sk_prot gets restored and
sk->sk_prot->sock_is_readable becomes NULL.
This makes sk_is_readable() racy, if the value of sk->sk_prot is reloaded
after the initial check. Which in turn may lead to a null pointer
dereference.
Ensure the function pointer does not turn NULL after the check.
In the Linux kernel, the following vulnerability has been resolved:
espintcp: remove encap socket caching to avoid reference leak
The current scheme for caching the encap socket can lead to reference
leaks when we try to delete the netns.
The reference chain is: xfrm_state -> enacp_sk -> netns
Since the encap socket is a userspace socket, it holds a reference on
the netns. If we delete the espintcp state (through flush or
individual delete) before removing the netns, the reference on the
socket is dropped and the netns is correctly deleted. Otherwise, the
netns may not be reachable anymore (if all processes within the ns
have terminated), so we cannot delete the xfrm state to drop its
reference on the socket.
This patch results in a small (~2% in my tests) performance
regression.
A GC-type mechanism could be added for the socket cache, to clear
references if the state hasn't been used "recently", but it's a lot
more complex than just not caching the socket.
In the Linux kernel, the following vulnerability has been resolved:
x86/iopl: Cure TIF_IO_BITMAP inconsistencies
io_bitmap_exit() is invoked from exit_thread() when a task exists or
when a fork fails. In the latter case the exit_thread() cleans up
resources which were allocated during fork().
io_bitmap_exit() invokes task_update_io_bitmap(), which in turn ends up
in tss_update_io_bitmap(). tss_update_io_bitmap() operates on the
current task. If current has TIF_IO_BITMAP set, but no bitmap installed,
tss_update_io_bitmap() crashes with a NULL pointer dereference.
There are two issues, which lead to that problem:
1) io_bitmap_exit() should not invoke task_update_io_bitmap() when
the task, which is cleaned up, is not the current task. That's a
clear indicator for a cleanup after a failed fork().
2) A task should not have TIF_IO_BITMAP set and neither a bitmap
installed nor IOPL emulation level 3 activated.
This happens when a kernel thread is created in the context of
a user space thread, which has TIF_IO_BITMAP set as the thread
flags are copied and the IO bitmap pointer is cleared.
Other than in the failed fork() case this has no impact because
kernel threads including IO workers never return to user space and
therefore never invoke tss_update_io_bitmap().
Cure this by adding the missing cleanups and checks:
1) Prevent io_bitmap_exit() to invoke task_update_io_bitmap() if
the to be cleaned up task is not the current task.
2) Clear TIF_IO_BITMAP in copy_thread() unconditionally. For user
space forks it is set later, when the IO bitmap is inherited in
io_bitmap_share().
For paranoia sake, add a warning into tss_update_io_bitmap() to catch
the case, when that code is invoked with inconsistent state.