Heap-based buffer overflow in the parse_codes function in archive_read_support_format_rar.c in libarchive before 3.2.1 allows remote attackers to execute arbitrary code via a RAR file with a zero-sized dictionary.
Integer overflow in the read_SubStreamsInfo function in archive_read_support_format_7zip.c in libarchive before 3.2.1 allows remote attackers to execute arbitrary code via a 7zip file with a large number of substreams, which triggers a heap-based buffer overflow.
Oracle MySQL through 5.5.52, 5.6.x through 5.6.33, and 5.7.x through 5.7.15; MariaDB before 5.5.51, 10.0.x before 10.0.27, and 10.1.x before 10.1.17; and Percona Server before 5.5.51-38.1, 5.6.x before 5.6.32-78.0, and 5.7.x before 5.7.14-7 allow local users to create arbitrary configurations and bypass certain protection mechanisms by setting general_log_file to a my.cnf configuration. NOTE: this can be leveraged to execute arbitrary code with root privileges by setting malloc_lib. NOTE: the affected MySQL version information is from Oracle's October 2016 CPU. Oracle has not commented on third-party claims that the issue was silently patched in MySQL 5.5.52, 5.6.33, and 5.7.15.
The web console in Red Hat JBoss Operations Network (JON) before 3.3.7 does not properly authorize requests to add users with the super user role, which allows remote authenticated users to gain admin privileges via a crafted POST request.
The dashbuilder in Red Hat JBoss BPM Suite 6.3.2 does not properly handle CSRF tokens generated during an active session and includes them in query strings, which makes easier for remote attackers to (1) bypass CSRF protection mechanisms or (2) conduct cross-site request forgery (CSRF) attacks by obtaining an old token.
Multiple cross-site scripting (XSS) vulnerabilities in the admin pages in dashbuilder in Red Hat JBoss BPM Suite 6.3.2 allow remote attackers to inject arbitrary web script or HTML via unspecified vectors.
Red Hat JBoss BPM Suite 6.3.x does not include the HTTPOnly flag in a Set-Cookie header for session cookies, which makes it easier for remote attackers to obtain potentially sensitive information via script access to the cookies.
The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack.