In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Inhibit aborts if external loopback plug is inserted
After running a short external loopback test, when the external loopback is
removed and a normal cable inserted that is directly connected to a target
device, the system oops in the llpfc_set_rrq_active() routine.
When the loopback was inserted an FLOGI was transmit. As we're looped back,
we receive the FLOGI request. The FLOGI is ABTS'd as we recognize the same
wppn thus understand it's a loopback. However, as the ABTS sends address
information the port is not set to (fffffe), the ABTS is dropped on the
wire. A short 1 frame loopback test is run and completes before the ABTS
times out. The looback is unplugged and the new cable plugged in, and the
an FLOGI to the new device occurs and completes. Due to a mixup in ref
counting the completion of the new FLOGI releases the fabric ndlp. Then the
original ABTS completes and references the released ndlp generating the
oops.
Correct by no-op'ing the ABTS when in loopback mode (it will be dropped
anyway). Added a flag to track the mode to recognize when it should be
no-op'd.
In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix a NULL pointer dereference in nvme_alloc_admin_tags
In nvme_alloc_admin_tags, the admin_q can be set to an error (typically
-ENOMEM) if the blk_mq_init_queue call fails to set up the queue, which
is checked immediately after the call. However, when we return the error
message up the stack, to nvme_reset_work the error takes us to
nvme_remove_dead_ctrl()
nvme_dev_disable()
nvme_suspend_queue(&dev->queues[0]).
Here, we only check that the admin_q is non-NULL, rather than not
an error or NULL, and begin quiescing a queue that never existed, leading
to bad / NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: rt5645: Fix errorenous cleanup order
There is a logic error when removing rt5645 device as the function
rt5645_i2c_remove() first cancel the &rt5645->jack_detect_work and
delete the &rt5645->btn_check_timer latter. However, since the timer
handler rt5645_btn_check_callback() will re-queue the jack_detect_work,
this cleanup order is buggy.
That is, once the del_timer_sync in rt5645_i2c_remove is concurrently
run with the rt5645_btn_check_callback, the canceled jack_detect_work
will be rescheduled again, leading to possible use-after-free.
This patch fix the issue by placing the del_timer_sync function before
the cancel_delayed_work_sync.
In the Linux kernel, the following vulnerability has been resolved:
net: remove two BUG() from skb_checksum_help()
I have a syzbot report that managed to get a crash in skb_checksum_help()
If syzbot can trigger these BUG(), it makes sense to replace
them with more friendly WARN_ON_ONCE() since skb_checksum_help()
can instead return an error code.
Note that syzbot will still crash there, until real bug is fixed.
In the Linux kernel, the following vulnerability has been resolved:
rtw89: cfo: check mac_id to avoid out-of-bounds
Somehow, hardware reports incorrect mac_id and pollute memory. Check index
before we access the array.
UBSAN: array-index-out-of-bounds in rtw89/phy.c:2517:23
index 188 is out of range for type 's32 [64]'
CPU: 1 PID: 51550 Comm: irq/35-rtw89_pc Tainted: G OE
Call Trace:
<IRQ>
show_stack+0x52/0x58
dump_stack_lvl+0x4c/0x63
dump_stack+0x10/0x12
ubsan_epilogue+0x9/0x45
__ubsan_handle_out_of_bounds.cold+0x44/0x49
? __alloc_skb+0x92/0x1d0
rtw89_phy_cfo_parse+0x44/0x7f [rtw89_core]
rtw89_core_rx+0x261/0x871 [rtw89_core]
? __alloc_skb+0xee/0x1d0
rtw89_pci_napi_poll+0x3fa/0x4ea [rtw89_pci]
__napi_poll+0x33/0x1a0
net_rx_action+0x126/0x260
? __queue_work+0x217/0x4c0
__do_softirq+0xd9/0x315
? disable_irq_nosync+0x10/0x10
do_softirq.part.0+0x6d/0x90
</IRQ>
<TASK>
__local_bh_enable_ip+0x62/0x70
rtw89_pci_interrupt_threadfn+0x182/0x1a6 [rtw89_pci]
irq_thread_fn+0x28/0x60
irq_thread+0xc8/0x190
? irq_thread_fn+0x60/0x60
kthread+0x16b/0x190
? irq_thread_check_affinity+0xe0/0xe0
? set_kthread_struct+0x50/0x50
ret_from_fork+0x22/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
net: phy: micrel: Allow probing without .driver_data
Currently, if the .probe element is present in the phy_driver structure
and the .driver_data is not, a NULL pointer dereference happens.
Allow passing .probe without .driver_data by inserting NULL checks
for priv->type.
In the Linux kernel, the following vulnerability has been resolved:
ARM: versatile: Add missing of_node_put in dcscb_init
The device_node pointer is returned by of_find_compatible_node
with refcount incremented. We should use of_node_put() to avoid
the refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
blk-throttle: Set BIO_THROTTLED when bio has been throttled
1.In current process, all bio will set the BIO_THROTTLED flag
after __blk_throtl_bio().
2.If bio needs to be throttled, it will start the timer and
stop submit bio directly. Bio will submit in
blk_throtl_dispatch_work_fn() when the timer expires.But in
the current process, if bio is throttled. The BIO_THROTTLED
will be set to bio after timer start. If the bio has been
completed, it may cause use-after-free blow.
BUG: KASAN: use-after-free in blk_throtl_bio+0x12f0/0x2c70
Read of size 2 at addr ffff88801b8902d4 by task fio/26380
dump_stack+0x9b/0xce
print_address_description.constprop.6+0x3e/0x60
kasan_report.cold.9+0x22/0x3a
blk_throtl_bio+0x12f0/0x2c70
submit_bio_checks+0x701/0x1550
submit_bio_noacct+0x83/0xc80
submit_bio+0xa7/0x330
mpage_readahead+0x380/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Allocated by task 26380:
kasan_save_stack+0x19/0x40
__kasan_kmalloc.constprop.2+0xc1/0xd0
kmem_cache_alloc+0x146/0x440
mempool_alloc+0x125/0x2f0
bio_alloc_bioset+0x353/0x590
mpage_alloc+0x3b/0x240
do_mpage_readpage+0xddf/0x1ef0
mpage_readahead+0x264/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 0:
kasan_save_stack+0x19/0x40
kasan_set_track+0x1c/0x30
kasan_set_free_info+0x1b/0x30
__kasan_slab_free+0x111/0x160
kmem_cache_free+0x94/0x460
mempool_free+0xd6/0x320
bio_free+0xe0/0x130
bio_put+0xab/0xe0
bio_endio+0x3a6/0x5d0
blk_update_request+0x590/0x1370
scsi_end_request+0x7d/0x400
scsi_io_completion+0x1aa/0xe50
scsi_softirq_done+0x11b/0x240
blk_mq_complete_request+0xd4/0x120
scsi_mq_done+0xf0/0x200
virtscsi_vq_done+0xbc/0x150
vring_interrupt+0x179/0x390
__handle_irq_event_percpu+0xf7/0x490
handle_irq_event_percpu+0x7b/0x160
handle_irq_event+0xcc/0x170
handle_edge_irq+0x215/0xb20
common_interrupt+0x60/0x120
asm_common_interrupt+0x1e/0x40
Fix this by move BIO_THROTTLED set into the queue_lock.
In the Linux kernel, the following vulnerability has been resolved:
ARM: hisi: Add missing of_node_put after of_find_compatible_node
of_find_compatible_node will increment the refcount of the returned
device_node. Calling of_node_put() to avoid the refcount leak