In the Linux kernel, the following vulnerability has been resolved:
netfilter: x_tables: fix percpu counter block leak on error path when creating new netns
Here is the stack where we allocate percpu counter block:
+-< __alloc_percpu
+-< xt_percpu_counter_alloc
+-< find_check_entry # {arp,ip,ip6}_tables.c
+-< translate_table
And it can be leaked on this code path:
+-> ip6t_register_table
+-> translate_table # allocates percpu counter block
+-> xt_register_table # fails
there is no freeing of the counter block on xt_register_table fail.
Note: xt_percpu_counter_free should be called to free it like we do in
do_replace through cleanup_entry helper (or in __ip6t_unregister_table).
Probability of hitting this error path is low AFAICS (xt_register_table
can only return ENOMEM here, as it is not replacing anything, as we are
creating new netns, and it is hard to imagine that all previous
allocations succeeded and after that one in xt_register_table failed).
But it's worth fixing even the rare leak.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: wraparound mbox producer index
Driver is not handling the wraparound of the mbox producer index correctly.
Currently the wraparound happens once u32 max is reached.
Bit 31 of the producer index register is special and should be set
only once for the first command. Because the producer index overflow
setting bit31 after a long time, FW goes to initialization sequence
and this causes FW hang.
Fix is to wraparound the mbox producer index once it reaches u16 max.
In the Linux kernel, the following vulnerability has been resolved:
crypto: cavium - prevent integer overflow loading firmware
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "ntohl(ucode->code_length) * 2" multiplication can have an
integer overflow.
In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: fix shift-out-of-bounds in dbDiscardAG
This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor.
In the Linux kernel, the following vulnerability has been resolved:
hugetlbfs: fix null-ptr-deref in hugetlbfs_parse_param()
Syzkaller reports a null-ptr-deref bug as follows:
======================================================
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:hugetlbfs_parse_param+0x1dd/0x8e0 fs/hugetlbfs/inode.c:1380
[...]
Call Trace:
<TASK>
vfs_parse_fs_param fs/fs_context.c:148 [inline]
vfs_parse_fs_param+0x1f9/0x3c0 fs/fs_context.c:129
vfs_parse_fs_string+0xdb/0x170 fs/fs_context.c:191
generic_parse_monolithic+0x16f/0x1f0 fs/fs_context.c:231
do_new_mount fs/namespace.c:3036 [inline]
path_mount+0x12de/0x1e20 fs/namespace.c:3370
do_mount fs/namespace.c:3383 [inline]
__do_sys_mount fs/namespace.c:3591 [inline]
__se_sys_mount fs/namespace.c:3568 [inline]
__x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
</TASK>
======================================================
According to commit "vfs: parse: deal with zero length string value",
kernel will set the param->string to null pointer in vfs_parse_fs_string()
if fs string has zero length.
Yet the problem is that, hugetlbfs_parse_param() will dereference the
param->string, without checking whether it is a null pointer. To be more
specific, if hugetlbfs_parse_param() parses an illegal mount parameter,
such as "size=,", kernel will constructs struct fs_parameter with null
pointer in vfs_parse_fs_string(), then passes this struct fs_parameter to
hugetlbfs_parse_param(), which triggers the above null-ptr-deref bug.
This patch solves it by adding sanity check on param->string
in hugetlbfs_parse_param().
In the Linux kernel, the following vulnerability has been resolved:
9p: set req refcount to zero to avoid uninitialized usage
When a new request is allocated, the refcount will be zero if it is
reused, but if the request is newly allocated from slab, it is not fully
initialized before being added to idr.
If the p9_read_work got a response before the refcount initiated. It will
use a uninitialized req, which will result in a bad request data struct.
Here is the logs from syzbot.
Corrupted memory at 0xffff88807eade00b [ 0xff 0x07 0x00 0x00 0x00 0x00
0x00 0x00 . . . . . . . . ] (in kfence-#110):
p9_fcall_fini net/9p/client.c:248 [inline]
p9_req_put net/9p/client.c:396 [inline]
p9_req_put+0x208/0x250 net/9p/client.c:390
p9_client_walk+0x247/0x540 net/9p/client.c:1165
clone_fid fs/9p/fid.h:21 [inline]
v9fs_fid_xattr_set+0xe4/0x2b0 fs/9p/xattr.c:118
v9fs_xattr_set fs/9p/xattr.c:100 [inline]
v9fs_xattr_handler_set+0x6f/0x120 fs/9p/xattr.c:159
__vfs_setxattr+0x119/0x180 fs/xattr.c:182
__vfs_setxattr_noperm+0x129/0x5f0 fs/xattr.c:216
__vfs_setxattr_locked+0x1d3/0x260 fs/xattr.c:277
vfs_setxattr+0x143/0x340 fs/xattr.c:309
setxattr+0x146/0x160 fs/xattr.c:617
path_setxattr+0x197/0x1c0 fs/xattr.c:636
__do_sys_setxattr fs/xattr.c:652 [inline]
__se_sys_setxattr fs/xattr.c:648 [inline]
__ia32_sys_setxattr+0xc0/0x160 fs/xattr.c:648
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0x65/0xf0 arch/x86/entry/common.c:178
do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Below is a similar scenario, the scenario in the syzbot log looks more
complicated than this one, but this patch can fix it.
T21124 p9_read_work
======================== second trans =================================
p9_client_walk
p9_client_rpc
p9_client_prepare_req
p9_tag_alloc
req = kmem_cache_alloc(p9_req_cache, GFP_NOFS);
tag = idr_alloc
<< preempted >>
req->tc.tag = tag;
/* req->[refcount/tag] == uninitialized */
m->rreq = p9_tag_lookup(m->client, m->rc.tag);
/* increments uninitalized refcount */
refcount_set(&req->refcount, 2);
/* cb drops one ref */
p9_client_cb(req)
/* reader thread drops its ref:
request is incorrectly freed */
p9_req_put(req)
/* use after free and ref underflow */
p9_req_put(req)
To fix it, we can initialize the refcount to zero before add to idr.
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix potential memory leak in brcmf_netdev_start_xmit()
The brcmf_netdev_start_xmit() returns NETDEV_TX_OK without freeing skb
in case of pskb_expand_head() fails, add dev_kfree_skb() to fix it.
Compile tested only.
In the Linux kernel, the following vulnerability has been resolved:
mtd: maps: pxa2xx-flash: fix memory leak in probe
Free 'info' upon remapping error to avoid a memory leak.
[<miquel.raynal@bootlin.com>: Reword the commit log]
In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: idle: Check acpi_fetch_acpi_dev() return value
The return value of acpi_fetch_acpi_dev() could be NULL, which would
cause a NULL pointer dereference to occur in acpi_device_hid().
[ rjw: Subject and changelog edits, added empty line after if () ]