In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid deadlock in fs reclaim with page writeback
Ext4 has a filesystem wide lock protecting ext4_writepages() calls to
avoid races with switching of journalled data flag or inode format. This
lock can however cause a deadlock like:
CPU0 CPU1
ext4_writepages()
percpu_down_read(sbi->s_writepages_rwsem);
ext4_change_inode_journal_flag()
percpu_down_write(sbi->s_writepages_rwsem);
- blocks, all readers block from now on
ext4_do_writepages()
ext4_init_io_end()
kmem_cache_zalloc(io_end_cachep, GFP_KERNEL)
fs_reclaim frees dentry...
dentry_unlink_inode()
iput() - last ref =>
iput_final() - inode dirty =>
write_inode_now()...
ext4_writepages() tries to acquire sbi->s_writepages_rwsem
and blocks forever
Make sure we cannot recurse into filesystem reclaim from writeback code
to avoid the deadlock.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Pointer may be dereferenced
Klocwork tool reported pointer 'rport' returned from call to function
fc_bsg_to_rport() may be NULL and will be dereferenced.
Add a fix to validate rport before dereferencing.
In the Linux kernel, the following vulnerability has been resolved:
md/raid10: prevent soft lockup while flush writes
Currently, there is no limit for raid1/raid10 plugged bio. While flushing
writes, raid1 has cond_resched() while raid10 doesn't, and too many
writes can cause soft lockup.
Follow up soft lockup can be triggered easily with writeback test for
raid10 with ramdisks:
watchdog: BUG: soft lockup - CPU#10 stuck for 27s! [md0_raid10:1293]
Call Trace:
<TASK>
call_rcu+0x16/0x20
put_object+0x41/0x80
__delete_object+0x50/0x90
delete_object_full+0x2b/0x40
kmemleak_free+0x46/0xa0
slab_free_freelist_hook.constprop.0+0xed/0x1a0
kmem_cache_free+0xfd/0x300
mempool_free_slab+0x1f/0x30
mempool_free+0x3a/0x100
bio_free+0x59/0x80
bio_put+0xcf/0x2c0
free_r10bio+0xbf/0xf0
raid_end_bio_io+0x78/0xb0
one_write_done+0x8a/0xa0
raid10_end_write_request+0x1b4/0x430
bio_endio+0x175/0x320
brd_submit_bio+0x3b9/0x9b7 [brd]
__submit_bio+0x69/0xe0
submit_bio_noacct_nocheck+0x1e6/0x5a0
submit_bio_noacct+0x38c/0x7e0
flush_pending_writes+0xf0/0x240
raid10d+0xac/0x1ed0
Fix the problem by adding cond_resched() to raid10 like what raid1 did.
Note that unlimited plugged bio still need to be optimized, for example,
in the case of lots of dirty pages writeback, this will take lots of
memory and io will spend a long time in plug, hence io latency is bad.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix calltrace warning in amddrm_buddy_fini
The following call trace is observed when removing the amdgpu driver, which
is caused by that BOs allocated for psp are not freed until removing.
[61811.450562] RIP: 0010:amddrm_buddy_fini.cold+0x29/0x47 [amddrm_buddy]
[61811.450577] Call Trace:
[61811.450577] <TASK>
[61811.450579] amdgpu_vram_mgr_fini+0x135/0x1c0 [amdgpu]
[61811.450728] amdgpu_ttm_fini+0x207/0x290 [amdgpu]
[61811.450870] amdgpu_bo_fini+0x27/0xa0 [amdgpu]
[61811.451012] gmc_v9_0_sw_fini+0x4a/0x60 [amdgpu]
[61811.451166] amdgpu_device_fini_sw+0x117/0x520 [amdgpu]
[61811.451306] amdgpu_driver_release_kms+0x16/0x30 [amdgpu]
[61811.451447] devm_drm_dev_init_release+0x4d/0x80 [drm]
[61811.451466] devm_action_release+0x15/0x20
[61811.451469] release_nodes+0x40/0xb0
[61811.451471] devres_release_all+0x9b/0xd0
[61811.451473] __device_release_driver+0x1bb/0x2a0
[61811.451476] driver_detach+0xf3/0x140
[61811.451479] bus_remove_driver+0x6c/0xf0
[61811.451481] driver_unregister+0x31/0x60
[61811.451483] pci_unregister_driver+0x40/0x90
[61811.451486] amdgpu_exit+0x15/0x447 [amdgpu]
For smu v13_0_2, if the GPU supports xgmi, refer to
commit f5c7e7797060 ("drm/amdgpu: Adjust removal control flow for smu v13_0_2"),
it will run gpu recover in AMDGPU_RESET_FOR_DEVICE_REMOVE mode when removing,
which makes all devices in hive list have hw reset but no resume except the
basic ip blocks, then other ip blocks will not call .hw_fini according to
ip_block.status.hw.
Since psp_free_shared_bufs just includes some software operations, so move
it to psp_sw_fini.
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: Fix use after free for wext
Key information in wext.connect is not reset on (re)connect and can hold
data from a previous connection.
Reset key data to avoid that drivers or mac80211 incorrectly detect a
WEP connection request and access the freed or already reused memory.
Additionally optimize cfg80211_sme_connect() and avoid an useless
schedule of conn_work.
In the Linux kernel, the following vulnerability has been resolved:
bpf: make sure skb->len != 0 when redirecting to a tunneling device
syzkaller managed to trigger another case where skb->len == 0
when we enter __dev_queue_xmit:
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 skb_assert_len include/linux/skbuff.h:2576 [inline]
WARNING: CPU: 0 PID: 2470 at include/linux/skbuff.h:2576 __dev_queue_xmit+0x2069/0x35e0 net/core/dev.c:4295
Call Trace:
dev_queue_xmit+0x17/0x20 net/core/dev.c:4406
__bpf_tx_skb net/core/filter.c:2115 [inline]
__bpf_redirect_no_mac net/core/filter.c:2140 [inline]
__bpf_redirect+0x5fb/0xda0 net/core/filter.c:2163
____bpf_clone_redirect net/core/filter.c:2447 [inline]
bpf_clone_redirect+0x247/0x390 net/core/filter.c:2419
bpf_prog_48159a89cb4a9a16+0x59/0x5e
bpf_dispatcher_nop_func include/linux/bpf.h:897 [inline]
__bpf_prog_run include/linux/filter.h:596 [inline]
bpf_prog_run include/linux/filter.h:603 [inline]
bpf_test_run+0x46c/0x890 net/bpf/test_run.c:402
bpf_prog_test_run_skb+0xbdc/0x14c0 net/bpf/test_run.c:1170
bpf_prog_test_run+0x345/0x3c0 kernel/bpf/syscall.c:3648
__sys_bpf+0x43a/0x6c0 kernel/bpf/syscall.c:5005
__do_sys_bpf kernel/bpf/syscall.c:5091 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5089 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5089
do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48
entry_SYSCALL_64_after_hwframe+0x61/0xc6
The reproducer doesn't really reproduce outside of syzkaller
environment, so I'm taking a guess here. It looks like we
do generate correct ETH_HLEN-sized packet, but we redirect
the packet to the tunneling device. Before we do so, we
__skb_pull l2 header and arrive again at skb->len == 0.
Doesn't seem like we can do anything better than having
an explicit check after __skb_pull?
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Make .remove and .shutdown HW shutdown consistent
Drivers' .remove and .shutdown callbacks are executed on different code
paths. The former is called when a device is removed from the bus, while
the latter is called at system shutdown time to quiesce the device.
This means that some overlap exists between the two, because both have to
take care of properly shutting down the hardware. But currently the logic
used in these two callbacks isn't consistent in msm drivers, which could
lead to kernel panic.
For example, on .remove the component is deleted and its .unbind callback
leads to the hardware being shutdown but only if the DRM device has been
marked as registered.
That check doesn't exist in the .shutdown logic and this can lead to the
driver calling drm_atomic_helper_shutdown() for a DRM device that hasn't
been properly initialized.
A situation like this can happen if drivers for expected sub-devices fail
to probe, since the .bind callback will never be executed. If that is the
case, drm_atomic_helper_shutdown() will attempt to take mutexes that are
only initialized if drm_mode_config_init() is called during a device bind.
This bug was attempted to be fixed in commit 623f279c7781 ("drm/msm: fix
shutdown hook in case GPU components failed to bind"), but unfortunately
it still happens in some cases as the one mentioned above, i.e:
systemd-shutdown[1]: Powering off.
kvm: exiting hardware virtualization
platform wifi-firmware.0: Removing from iommu group 12
platform video-firmware.0: Removing from iommu group 10
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1 at drivers/gpu/drm/drm_modeset_lock.c:317 drm_modeset_lock_all_ctx+0x3c4/0x3d0
...
Hardware name: Google CoachZ (rev3+) (DT)
pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : drm_modeset_lock_all_ctx+0x3c4/0x3d0
lr : drm_modeset_lock_all_ctx+0x48/0x3d0
sp : ffff80000805bb80
x29: ffff80000805bb80 x28: ffff327c00128000 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000001 x24: ffffc95d820ec030
x23: ffff327c00bbd090 x22: ffffc95d8215eca0 x21: ffff327c039c5800
x20: ffff327c039c5988 x19: ffff80000805bbe8 x18: 0000000000000034
x17: 000000040044ffff x16: ffffc95d80cac920 x15: 0000000000000000
x14: 0000000000000315 x13: 0000000000000315 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
x8 : ffff80000805bc28 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffff327c00128000 x1 : 0000000000000000 x0 : ffff327c039c59b0
Call trace:
drm_modeset_lock_all_ctx+0x3c4/0x3d0
drm_atomic_helper_shutdown+0x70/0x134
msm_drv_shutdown+0x30/0x40
platform_shutdown+0x28/0x40
device_shutdown+0x148/0x350
kernel_power_off+0x38/0x80
__do_sys_reboot+0x288/0x2c0
__arm64_sys_reboot+0x28/0x34
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0x44/0xec
do_el0_svc+0x2c/0xc0
el0_svc+0x2c/0x84
el0t_64_sync_handler+0x11c/0x150
el0t_64_sync+0x18c/0x190
---[ end trace 0000000000000000 ]---
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000010eab1000
[0000000000000018] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
...
Hardware name: Google CoachZ (rev3+) (DT)
pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : ww_mutex_lock+0x28/0x32c
lr : drm_modeset_lock_all_ctx+0x1b0/0x3d0
sp : ffff80000805bb50
x29: ffff80000805bb50 x28: ffff327c00128000 x27: 0000000000000000
x26: 00000
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed. A
proposed warning in clang aims to catch these at compile time, which
reveals:
drivers/gpu/drm/sti/sti_hda.c:637:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.mode_valid = sti_hda_connector_mode_valid,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/sti/sti_dvo.c:376:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.mode_valid = sti_dvo_connector_mode_valid,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/sti/sti_hdmi.c:1035:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict]
.mode_valid = sti_hdmi_connector_mode_valid,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
->mode_valid() in 'struct drm_connector_helper_funcs' expects a return
type of 'enum drm_mode_status', not 'int'. Adjust the return type of
sti_{dvo,hda,hdmi}_connector_mode_valid() to match the prototype's to
resolve the warning and CFI failure.