Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.298  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Make .remove and .shutdown HW shutdown consistent Drivers' .remove and .shutdown callbacks are executed on different code paths. The former is called when a device is removed from the bus, while the latter is called at system shutdown time to quiesce the device. This means that some overlap exists between the two, because both have to take care of properly shutting down the hardware. But currently the logic used in these two callbacks isn't consistent in msm drivers, which could lead to kernel panic. For example, on .remove the component is deleted and its .unbind callback leads to the hardware being shutdown but only if the DRM device has been marked as registered. That check doesn't exist in the .shutdown logic and this can lead to the driver calling drm_atomic_helper_shutdown() for a DRM device that hasn't been properly initialized. A situation like this can happen if drivers for expected sub-devices fail to probe, since the .bind callback will never be executed. If that is the case, drm_atomic_helper_shutdown() will attempt to take mutexes that are only initialized if drm_mode_config_init() is called during a device bind. This bug was attempted to be fixed in commit 623f279c7781 ("drm/msm: fix shutdown hook in case GPU components failed to bind"), but unfortunately it still happens in some cases as the one mentioned above, i.e: systemd-shutdown[1]: Powering off. kvm: exiting hardware virtualization platform wifi-firmware.0: Removing from iommu group 12 platform video-firmware.0: Removing from iommu group 10 ------------[ cut here ]------------ WARNING: CPU: 6 PID: 1 at drivers/gpu/drm/drm_modeset_lock.c:317 drm_modeset_lock_all_ctx+0x3c4/0x3d0 ... Hardware name: Google CoachZ (rev3+) (DT) pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : drm_modeset_lock_all_ctx+0x3c4/0x3d0 lr : drm_modeset_lock_all_ctx+0x48/0x3d0 sp : ffff80000805bb80 x29: ffff80000805bb80 x28: ffff327c00128000 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000001 x24: ffffc95d820ec030 x23: ffff327c00bbd090 x22: ffffc95d8215eca0 x21: ffff327c039c5800 x20: ffff327c039c5988 x19: ffff80000805bbe8 x18: 0000000000000034 x17: 000000040044ffff x16: ffffc95d80cac920 x15: 0000000000000000 x14: 0000000000000315 x13: 0000000000000315 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : ffff80000805bc28 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff327c00128000 x1 : 0000000000000000 x0 : ffff327c039c59b0 Call trace: drm_modeset_lock_all_ctx+0x3c4/0x3d0 drm_atomic_helper_shutdown+0x70/0x134 msm_drv_shutdown+0x30/0x40 platform_shutdown+0x28/0x40 device_shutdown+0x148/0x350 kernel_power_off+0x38/0x80 __do_sys_reboot+0x288/0x2c0 __arm64_sys_reboot+0x28/0x34 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0x44/0xec do_el0_svc+0x2c/0xc0 el0_svc+0x2c/0x84 el0t_64_sync_handler+0x11c/0x150 el0t_64_sync+0x18c/0x190 ---[ end trace 0000000000000000 ]--- Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010eab1000 [0000000000000018] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP ... Hardware name: Google CoachZ (rev3+) (DT) pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ww_mutex_lock+0x28/0x32c lr : drm_modeset_lock_all_ctx+0x1b0/0x3d0 sp : ffff80000805bb50 x29: ffff80000805bb50 x28: ffff327c00128000 x27: 0000000000000000 x26: 00000 ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/gpu/drm/sti/sti_hda.c:637:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hda_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_dvo.c:376:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_dvo_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ drivers/gpu/drm/sti/sti_hdmi.c:1035:16: error: incompatible function pointer types initializing 'enum drm_mode_status (*)(struct drm_connector *, struct drm_display_mode *)' with an expression of type 'int (struct drm_connector *, struct drm_display_mode *)' [-Werror,-Wincompatible-function-pointer-types-strict] .mode_valid = sti_hdmi_connector_mode_valid, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ->mode_valid() in 'struct drm_connector_helper_funcs' expects a return type of 'enum drm_mode_status', not 'int'. Adjust the return type of sti_{dvo,hda,hdmi}_connector_mode_valid() to match the prototype's to resolve the warning and CFI failure.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix use_count leakage when handling boot-on I found a use_count leakage towards supply regulator of rdev with boot-on option. ┌───────────────────┐ ┌───────────────────┐ │ regulator_dev A │ │ regulator_dev B │ │ (boot-on) │ │ (boot-on) │ │ use_count=0 │◀──supply──│ use_count=1 │ │ │ │ │ └───────────────────┘ └───────────────────┘ In case of rdev(A) configured with `regulator-boot-on', the use_count of supplying regulator(B) will increment inside regulator_enable(rdev->supply). Thus, B will acts like always-on, and further balanced regulator_enable/disable cannot actually disable it anymore. However, B was also configured with `regulator-boot-on', we wish it could be disabled afterwards.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: mmc: vub300: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, the memory that allocated in mmc_alloc_host() will be leaked and it will lead a kernel crash because of deleting not added device in the remove path. So fix this by checking the return value and goto error path which will call mmc_free_host(), besides, the timer added before mmc_add_host() needs be del. And this patch fixes another missing call mmc_free_host() if usb_control_msg() fails.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: igb: Do not free q_vector unless new one was allocated Avoid potential use-after-free condition under memory pressure. If the kzalloc() fails, q_vector will be freed but left in the original adapter->q_vector[v_idx] array position.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: iommu/mediatek: Fix crash on isr after kexec() If the system is rebooted via isr(), the IRQ handler might be triggered before the domain is initialized. Resulting on an invalid memory access error. Fix: [ 0.500930] Unable to handle kernel read from unreadable memory at virtual address 0000000000000070 [ 0.501166] Call trace: [ 0.501174] report_iommu_fault+0x28/0xfc [ 0.501180] mtk_iommu_isr+0x10c/0x1c0 [ joro: Fixed spelling in commit message ]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: NFSD: fix use-after-free on source server when doing inter-server copy Use-after-free occurred when the laundromat tried to free expired cpntf_state entry on the s2s_cp_stateids list after inter-server copy completed. The sc_cp_list that the expired copy state was inserted on was already freed. When COPY completes, the Linux client normally sends LOCKU(lock_state x), FREE_STATEID(lock_state x) and CLOSE(open_state y) to the source server. The nfs4_put_stid call from nfsd4_free_stateid cleans up the copy state from the s2s_cp_stateids list before freeing the lock state's stid. However, sometimes the CLOSE was sent before the FREE_STATEID request. When this happens, the nfsd4_close_open_stateid call from nfsd4_close frees all lock states on its st_locks list without cleaning up the copy state on the sc_cp_list list. When the time the FREE_STATEID arrives the server returns BAD_STATEID since the lock state was freed. This causes the use-after-free error to occur when the laundromat tries to free the expired cpntf_state. This patch adds a call to nfs4_free_cpntf_statelist in nfsd4_close_open_stateid to clean up the copy state before calling free_ol_stateid_reaplist to free the lock state's stid on the reaplist.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: drivers: net: qlcnic: Fix potential memory leak in qlcnic_sriov_init() If vp alloc failed in qlcnic_sriov_init(), all previously allocated vp needs to be freed.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: cxl: fix possible null-ptr-deref in cxl_pci_init_afu|adapter() If device_register() fails in cxl_pci_afu|adapter(), the device is not added, device_unregister() can not be called in the error path, otherwise it will cause a null-ptr-deref because of removing not added device. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So split device_unregister() into device_del() and put_device(), then goes to put dev when register fails.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: rapidio: fix possible UAF when kfifo_alloc() fails If kfifo_alloc() fails in mport_cdev_open(), goto err_fifo and just free priv. But priv is still in the chdev->file_list, then list traversal may cause UAF. This fixes the following smatch warning: drivers/rapidio/devices/rio_mport_cdev.c:1930 mport_cdev_open() warn: '&priv->list' not removed from list
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-15


Contact Us

Shodan ® - All rights reserved