In the Linux kernel, the following vulnerability has been resolved:
sched/task_stack: fix object_is_on_stack() for KASAN tagged pointers
When CONFIG_KASAN_SW_TAGS and CONFIG_KASAN_STACK are enabled, the
object_is_on_stack() function may produce incorrect results due to the
presence of tags in the obj pointer, while the stack pointer does not have
tags. This discrepancy can lead to incorrect stack object detection and
subsequently trigger warnings if CONFIG_DEBUG_OBJECTS is also enabled.
Example of the warning:
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1 at lib/debugobjects.c:557 __debug_object_init+0x330/0x364
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-rc5 #4
Hardware name: linux,dummy-virt (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __debug_object_init+0x330/0x364
lr : __debug_object_init+0x330/0x364
sp : ffff800082ea7b40
x29: ffff800082ea7b40 x28: 98ff0000c0164518 x27: 98ff0000c0164534
x26: ffff800082d93ec8 x25: 0000000000000001 x24: 1cff0000c00172a0
x23: 0000000000000000 x22: ffff800082d93ed0 x21: ffff800081a24418
x20: 3eff800082ea7bb0 x19: efff800000000000 x18: 0000000000000000
x17: 00000000000000ff x16: 0000000000000047 x15: 206b63617473206e
x14: 0000000000000018 x13: ffff800082ea7780 x12: 0ffff800082ea78e
x11: 0ffff800082ea790 x10: 0ffff800082ea79d x9 : 34d77febe173e800
x8 : 34d77febe173e800 x7 : 0000000000000001 x6 : 0000000000000001
x5 : feff800082ea74b8 x4 : ffff800082870a90 x3 : ffff80008018d3c4
x2 : 0000000000000001 x1 : ffff800082858810 x0 : 0000000000000050
Call trace:
__debug_object_init+0x330/0x364
debug_object_init_on_stack+0x30/0x3c
schedule_hrtimeout_range_clock+0xac/0x26c
schedule_hrtimeout+0x1c/0x30
wait_task_inactive+0x1d4/0x25c
kthread_bind_mask+0x28/0x98
init_rescuer+0x1e8/0x280
workqueue_init+0x1a0/0x3cc
kernel_init_freeable+0x118/0x200
kernel_init+0x28/0x1f0
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
ODEBUG: object 3eff800082ea7bb0 is NOT on stack ffff800082ea0000, but annotated.
------------[ cut here ]------------
In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Clear virtualized VMLOAD/VMSAVE on Zen4 client
A number of Zen4 client SoCs advertise the ability to use virtualized
VMLOAD/VMSAVE, but using these instructions is reported to be a cause
of a random host reboot.
These instructions aren't intended to be advertised on Zen4 client
so clear the capability.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Adjust VSDB parser for replay feature
At some point, the IEEE ID identification for the replay check in the
AMD EDID was added. However, this check causes the following
out-of-bounds issues when using KASAN:
[ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu]
[ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383
...
[ 27.821207] Memory state around the buggy address:
[ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 27.821243] ^
[ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821268] ==================================================================
This is caused because the ID extraction happens outside of the range of
the edid lenght. This commit addresses this issue by considering the
amd_vsdb_block size.
(cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8)
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: uncache inode which has failed entering the group
Syzbot has reported the following BUG:
kernel BUG at fs/ocfs2/uptodate.c:509!
...
Call Trace:
<TASK>
? __die_body+0x5f/0xb0
? die+0x9e/0xc0
? do_trap+0x15a/0x3a0
? ocfs2_set_new_buffer_uptodate+0x145/0x160
? do_error_trap+0x1dc/0x2c0
? ocfs2_set_new_buffer_uptodate+0x145/0x160
? __pfx_do_error_trap+0x10/0x10
? handle_invalid_op+0x34/0x40
? ocfs2_set_new_buffer_uptodate+0x145/0x160
? exc_invalid_op+0x38/0x50
? asm_exc_invalid_op+0x1a/0x20
? ocfs2_set_new_buffer_uptodate+0x2e/0x160
? ocfs2_set_new_buffer_uptodate+0x144/0x160
? ocfs2_set_new_buffer_uptodate+0x145/0x160
ocfs2_group_add+0x39f/0x15a0
? __pfx_ocfs2_group_add+0x10/0x10
? __pfx_lock_acquire+0x10/0x10
? mnt_get_write_access+0x68/0x2b0
? __pfx_lock_release+0x10/0x10
? rcu_read_lock_any_held+0xb7/0x160
? __pfx_rcu_read_lock_any_held+0x10/0x10
? smack_log+0x123/0x540
? mnt_get_write_access+0x68/0x2b0
? mnt_get_write_access+0x68/0x2b0
? mnt_get_write_access+0x226/0x2b0
ocfs2_ioctl+0x65e/0x7d0
? __pfx_ocfs2_ioctl+0x10/0x10
? smack_file_ioctl+0x29e/0x3a0
? __pfx_smack_file_ioctl+0x10/0x10
? lockdep_hardirqs_on_prepare+0x43d/0x780
? __pfx_lockdep_hardirqs_on_prepare+0x10/0x10
? __pfx_ocfs2_ioctl+0x10/0x10
__se_sys_ioctl+0xfb/0x170
do_syscall_64+0xf3/0x230
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
</TASK>
When 'ioctl(OCFS2_IOC_GROUP_ADD, ...)' has failed for the particular
inode in 'ocfs2_verify_group_and_input()', corresponding buffer head
remains cached and subsequent call to the same 'ioctl()' for the same
inode issues the BUG() in 'ocfs2_set_new_buffer_uptodate()' (trying
to cache the same buffer head of that inode). Fix this by uncaching
the buffer head with 'ocfs2_remove_from_cache()' on error path in
'ocfs2_group_add()'.
In the Linux kernel, the following vulnerability has been resolved:
hv_sock: Initializing vsk->trans to NULL to prevent a dangling pointer
When hvs is released, there is a possibility that vsk->trans may not
be initialized to NULL, which could lead to a dangling pointer.
This issue is resolved by initializing vsk->trans to NULL.
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Skip parsing frames of type UVC_VS_UNDEFINED in uvc_parse_format
This can lead to out of bounds writes since frames of this type were not
taken into account when calculating the size of the frames buffer in
uvc_parse_streaming.
In the Linux kernel, the following vulnerability has been resolved:
can: bcm: Fix UAF in bcm_proc_show()
BUG: KASAN: slab-use-after-free in bcm_proc_show+0x969/0xa80
Read of size 8 at addr ffff888155846230 by task cat/7862
CPU: 1 PID: 7862 Comm: cat Not tainted 6.5.0-rc1-00153-gc8746099c197 #230
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0xd5/0x150
print_report+0xc1/0x5e0
kasan_report+0xba/0xf0
bcm_proc_show+0x969/0xa80
seq_read_iter+0x4f6/0x1260
seq_read+0x165/0x210
proc_reg_read+0x227/0x300
vfs_read+0x1d5/0x8d0
ksys_read+0x11e/0x240
do_syscall_64+0x35/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Allocated by task 7846:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x9e/0xa0
bcm_sendmsg+0x264b/0x44e0
sock_sendmsg+0xda/0x180
____sys_sendmsg+0x735/0x920
___sys_sendmsg+0x11d/0x1b0
__sys_sendmsg+0xfa/0x1d0
do_syscall_64+0x35/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 7846:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x161/0x1c0
slab_free_freelist_hook+0x119/0x220
__kmem_cache_free+0xb4/0x2e0
rcu_core+0x809/0x1bd0
bcm_op is freed before procfs entry be removed in bcm_release(),
this lead to bcm_proc_show() may read the freed bcm_op.
In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized value issue in from_kuid and from_kgid
ocfs2_setattr() uses attr->ia_mode, attr->ia_uid and attr->ia_gid in
a trace point even though ATTR_MODE, ATTR_UID and ATTR_GID aren't set.
Initialize all fields of newattrs to avoid uninitialized variables, by
checking if ATTR_MODE, ATTR_UID, ATTR_GID are initialized, otherwise 0.
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/ufence: Prefetch ufence addr to catch bogus address
access_ok() only checks for addr overflow so also try to read the addr
to catch invalid addr sent from userspace.
(cherry picked from commit 9408c4508483ffc60811e910a93d6425b8e63928)
In the Linux kernel, the following vulnerability has been resolved:
bpf: Check validity of link->type in bpf_link_show_fdinfo()
If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing
bpf_link_type_strs[link->type] may result in an out-of-bounds access.
To spot such missed invocations early in the future, checking the
validity of link->type in bpf_link_show_fdinfo() and emitting a warning
when such invocations are missed.