In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
TensorFlow before 1.7.0 has an integer overflow that causes an out-of-bounds read, possibly causing disclosure of the contents of process memory. This occurs in the DecodeBmp feature of the BMP decoder in core/kernels/decode_bmp_op.cc.
In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant("hello", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.
Invalid memory access and/or a heap buffer overflow in the TensorFlow XLA compiler in Google TensorFlow before 1.7.1 could cause a crash or read from other parts of process memory via a crafted configuration file.
Memcpy parameter overlap in Google Snappy library 1.1.4, as used in Google TensorFlow before 1.7.1, could result in a crash or read from other parts of process memory.