In the Linux kernel, the following vulnerability has been resolved:
hwmon: (asus-ec-sensors) check sensor index in read_string()
Prevent a potential invalid memory access when the requested sensor
is not found.
find_ec_sensor_index() may return a negative value (e.g. -ENOENT),
but its result was used without checking, which could lead to
undefined behavior when passed to get_sensor_info().
Add a proper check to return -EINVAL if sensor_index is negative.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[groeck: Return error code returned from find_ec_sensor_index]
In the Linux kernel, the following vulnerability has been resolved:
page_pool: Fix use-after-free in page_pool_recycle_in_ring
syzbot reported a uaf in page_pool_recycle_in_ring:
BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862
Read of size 8 at addr ffff8880286045a0 by task syz.0.284/6943
CPU: 0 UID: 0 PID: 6943 Comm: syz.0.284 Not tainted 6.13.0-rc3-syzkaller-gdfa94ce54f41 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:165 [inline]
_raw_spin_unlock_bh+0x1b/0x40 kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
ptr_ring_produce_bh include/linux/ptr_ring.h:164 [inline]
page_pool_recycle_in_ring net/core/page_pool.c:707 [inline]
page_pool_put_unrefed_netmem+0x748/0xb00 net/core/page_pool.c:826
page_pool_put_netmem include/net/page_pool/helpers.h:323 [inline]
page_pool_put_full_netmem include/net/page_pool/helpers.h:353 [inline]
napi_pp_put_page+0x149/0x2b0 net/core/skbuff.c:1036
skb_pp_recycle net/core/skbuff.c:1047 [inline]
skb_free_head net/core/skbuff.c:1094 [inline]
skb_release_data+0x6c4/0x8a0 net/core/skbuff.c:1125
skb_release_all net/core/skbuff.c:1190 [inline]
__kfree_skb net/core/skbuff.c:1204 [inline]
sk_skb_reason_drop+0x1c9/0x380 net/core/skbuff.c:1242
kfree_skb_reason include/linux/skbuff.h:1263 [inline]
__skb_queue_purge_reason include/linux/skbuff.h:3343 [inline]
root cause is:
page_pool_recycle_in_ring
ptr_ring_produce
spin_lock(&r->producer_lock);
WRITE_ONCE(r->queue[r->producer++], ptr)
//recycle last page to pool
page_pool_release
page_pool_scrub
page_pool_empty_ring
ptr_ring_consume
page_pool_return_page //release all page
__page_pool_destroy
free_percpu(pool->recycle_stats);
free(pool) //free
spin_unlock(&r->producer_lock); //pool->ring uaf read
recycle_stat_inc(pool, ring);
page_pool can be free while page pool recycle the last page in ring.
Add producer-lock barrier to page_pool_release to prevent the page
pool from being free before all pages have been recycled.
recycle_stat_inc() is empty when CONFIG_PAGE_POOL_STATS is not
enabled, which will trigger Wempty-body build warning. Add definition
for pool stat macro to fix warning.
In the Linux kernel, the following vulnerability has been resolved:
coresight: prevent deactivate active config while enabling the config
While enable active config via cscfg_csdev_enable_active_config(),
active config could be deactivated via configfs' sysfs interface.
This could make UAF issue in below scenario:
CPU0 CPU1
(sysfs enable) load module
cscfg_load_config_sets()
activate config. // sysfs
(sys_active_cnt == 1)
...
cscfg_csdev_enable_active_config()
lock(csdev->cscfg_csdev_lock)
// here load config activate by CPU1
unlock(csdev->cscfg_csdev_lock)
deactivate config // sysfs
(sys_activec_cnt == 0)
cscfg_unload_config_sets()
unload module
// access to config_desc which freed
// while unloading module.
cscfg_csdev_enable_config
To address this, use cscfg_config_desc's active_cnt as a reference count
which will be holded when
- activate the config.
- enable the activated config.
and put the module reference when config_active_cnt == 0.
In the Linux kernel, the following vulnerability has been resolved:
coresight: holding cscfg_csdev_lock while removing cscfg from csdev
There'll be possible race scenario for coresight config:
CPU0 CPU1
(perf enable) load module
cscfg_load_config_sets()
activate config. // sysfs
(sys_active_cnt == 1)
...
cscfg_csdev_enable_active_config()
lock(csdev->cscfg_csdev_lock)
deactivate config // sysfs
(sys_activec_cnt == 0)
cscfg_unload_config_sets()
<iterating config_csdev_list> cscfg_remove_owned_csdev_configs()
// here load config activate by CPU1
unlock(csdev->cscfg_csdev_lock)
iterating config_csdev_list could be raced with config_csdev_list's
entry delete.
To resolve this race , hold csdev->cscfg_csdev_lock() while
cscfg_remove_owned_csdev_configs()
In the Linux kernel, the following vulnerability has been resolved:
serial: Fix potential null-ptr-deref in mlb_usio_probe()
devm_ioremap() can return NULL on error. Currently, mlb_usio_probe()
does not check for this case, which could result in a NULL pointer
dereference.
Add NULL check after devm_ioremap() to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_set_pipapo_avx2: fix initial map fill
If the first field doesn't cover the entire start map, then we must zero
out the remainder, else we leak those bits into the next match round map.
The early fix was incomplete and did only fix up the generic C
implementation.
A followup patch adds a test case to nft_concat_range.sh.
In the Linux kernel, the following vulnerability has been resolved:
gve: add missing NULL check for gve_alloc_pending_packet() in TX DQO
gve_alloc_pending_packet() can return NULL, but gve_tx_add_skb_dqo()
did not check for this case before dereferencing the returned pointer.
Add a missing NULL check to prevent a potential NULL pointer
dereference when allocation fails.
This improves robustness in low-memory scenarios.
In the Linux kernel, the following vulnerability has been resolved:
net: wwan: t7xx: Fix napi rx poll issue
When driver handles the napi rx polling requests, the netdev might
have been released by the dellink logic triggered by the disconnect
operation on user plane. However, in the logic of processing skb in
polling, an invalid netdev is still being used, which causes a panic.
BUG: kernel NULL pointer dereference, address: 00000000000000f1
Oops: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:dev_gro_receive+0x3a/0x620
[...]
Call Trace:
<IRQ>
? __die_body+0x68/0xb0
? page_fault_oops+0x379/0x3e0
? exc_page_fault+0x4f/0xa0
? asm_exc_page_fault+0x22/0x30
? __pfx_t7xx_ccmni_recv_skb+0x10/0x10 [mtk_t7xx (HASH:1400 7)]
? dev_gro_receive+0x3a/0x620
napi_gro_receive+0xad/0x170
t7xx_ccmni_recv_skb+0x48/0x70 [mtk_t7xx (HASH:1400 7)]
t7xx_dpmaif_napi_rx_poll+0x590/0x800 [mtk_t7xx (HASH:1400 7)]
net_rx_action+0x103/0x470
irq_exit_rcu+0x13a/0x310
sysvec_apic_timer_interrupt+0x56/0x90
</IRQ>
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: make sure that ptp_rate is not 0 before configuring EST
If the ptp_rate recorded earlier in the driver happens to be 0, this
bogus value will propagate up to EST configuration, where it will
trigger a division by 0.
Prevent this division by 0 by adding the corresponding check and error
code.
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: make sure that ptp_rate is not 0 before configuring timestamping
The stmmac platform drivers that do not open-code the clk_ptp_rate value
after having retrieved the default one from the device-tree can end up
with 0 in clk_ptp_rate (as clk_get_rate can return 0). It will
eventually propagate up to PTP initialization when bringing up the
interface, leading to a divide by 0:
Division by zero in kernel.
CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.30-00001-g48313bd5768a #22
Hardware name: STM32 (Device Tree Support)
Call trace:
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x6c/0x8c
dump_stack_lvl from Ldiv0_64+0x8/0x18
Ldiv0_64 from stmmac_init_tstamp_counter+0x190/0x1a4
stmmac_init_tstamp_counter from stmmac_hw_setup+0xc1c/0x111c
stmmac_hw_setup from __stmmac_open+0x18c/0x434
__stmmac_open from stmmac_open+0x3c/0xbc
stmmac_open from __dev_open+0xf4/0x1ac
__dev_open from __dev_change_flags+0x1cc/0x224
__dev_change_flags from dev_change_flags+0x24/0x60
dev_change_flags from ip_auto_config+0x2e8/0x11a0
ip_auto_config from do_one_initcall+0x84/0x33c
do_one_initcall from kernel_init_freeable+0x1b8/0x214
kernel_init_freeable from kernel_init+0x24/0x140
kernel_init from ret_from_fork+0x14/0x28
Exception stack(0xe0815fb0 to 0xe0815ff8)
Prevent this division by 0 by adding an explicit check and error log
about the actual issue. While at it, remove the same check from
stmmac_ptp_register, which then becomes duplicate