In the Linux kernel, the following vulnerability has been resolved:
fbdev: omapfb: lcd_mipid: Fix an error handling path in mipid_spi_probe()
If 'mipid_detect()' fails, we must free 'md' to avoid a memory leak.
In the Linux kernel, the following vulnerability has been resolved:
Input: exc3000 - properly stop timer on shutdown
We need to stop the timer on driver unbind or probe failures, otherwise
we get UAF/Oops.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: fix wrong ct->timeout value
(struct nf_conn)->timeout is an interval before the conntrack
confirmed. After confirmed, it becomes a timestamp.
It is observed that timeout of an unconfirmed conntrack:
- Set by calling ctnetlink_change_timeout(). As a result,
`nfct_time_stamp` was wrongly added to `ct->timeout` twice.
- Get by calling ctnetlink_dump_timeout(). As a result,
`nfct_time_stamp` was wrongly subtracted.
Call Trace:
<TASK>
dump_stack_lvl
ctnetlink_dump_timeout
__ctnetlink_glue_build
ctnetlink_glue_build
__nfqnl_enqueue_packet
nf_queue
nf_hook_slow
ip_mc_output
? __pfx_ip_finish_output
ip_send_skb
? __pfx_dst_output
udp_send_skb
udp_sendmsg
? __pfx_ip_generic_getfrag
sock_sendmsg
Separate the 2 cases in:
- Setting `ct->timeout` in __nf_ct_set_timeout().
- Getting `ct->timeout` in ctnetlink_dump_timeout().
Pablo appends:
Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is
set on, otherwise conntrack creation via ctnetlink breaks.
Note that the problem described in this patch occurs since the
introduction of the nfnetlink_queue conntrack support, select a
sufficiently old Fixes: tag for -stable kernel to pick up this fix.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject invalid reloc tree root keys with stack dump
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
That ASSERT() makes sure the reloc tree is properly pointed back by its
subvolume tree.
[CAUSE]
After more debugging output, it turns out we had an invalid reloc tree:
BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17
Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM,
QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree.
But reloc trees can only exist for subvolumes, as for non-subvolume
trees, we just COW the involved tree block, no need to create a reloc
tree since those tree blocks won't be shared with other trees.
Only subvolumes tree can share tree blocks with other trees (thus they
have BTRFS_ROOT_SHAREABLE flag).
Thus this new debug output proves my previous assumption that corrupted
on-disk data can trigger that ASSERT().
[FIX]
Besides the dedicated fix and the graceful exit, also let tree-checker to
check such root keys, to make sure reloc trees can only exist for subvolumes.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: Avoid nf_ct_helper_hash uses after free
If nf_conntrack_init_start() fails (for example due to a
register_nf_conntrack_bpf() failure), the nf_conntrack_helper_fini()
clean-up path frees the nf_ct_helper_hash map.
When built with NF_CONNTRACK=y, further netfilter modules (e.g:
netfilter_conntrack_ftp) can still be loaded and call
nf_conntrack_helpers_register(), independently of whether nf_conntrack
initialized correctly. This accesses the nf_ct_helper_hash dangling
pointer and causes a uaf, possibly leading to random memory corruption.
This patch guards nf_conntrack_helper_register() from accessing a freed
or uninitialized nf_ct_helper_hash pointer and fixes possible
uses-after-free when loading a conntrack module.
In the Linux kernel, the following vulnerability has been resolved:
md: fix soft lockup in status_resync
status_resync() will calculate 'curr_resync - recovery_active' to show
user a progress bar like following:
[============>........] resync = 61.4%
'curr_resync' and 'recovery_active' is updated in md_do_sync(), and
status_resync() can read them concurrently, hence it's possible that
'curr_resync - recovery_active' can overflow to a huge number. In this
case status_resync() will be stuck in the loop to print a large amount
of '=', which will end up soft lockup.
Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case,
this way resync in progress will be reported to user.
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix possible data races in gfs2_show_options()
Some fields such as gt_logd_secs of the struct gfs2_tune are accessed
without holding the lock gt_spin in gfs2_show_options():
val = sdp->sd_tune.gt_logd_secs;
if (val != 30)
seq_printf(s, ",commit=%d", val);
And thus can cause data races when gfs2_show_options() and other functions
such as gfs2_reconfigure() are concurrently executed:
spin_lock(>->gt_spin);
gt->gt_logd_secs = newargs->ar_commit;
To fix these possible data races, the lock sdp->sd_tune.gt_spin is
acquired before accessing the fields of gfs2_tune and released after these
accesses.
Further changes by Andreas:
- Don't hold the spin lock over the seq_printf operations.
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: avoid double ->queue_rq() because of early timeout
David Jeffery found one double ->queue_rq() issue, so far it can
be triggered in VM use case because of long vmexit latency or preempt
latency of vCPU pthread or long page fault in vCPU pthread, then block
IO req could be timed out before queuing the request to hardware but after
calling blk_mq_start_request() during ->queue_rq(), then timeout handler
may handle it by requeue, then double ->queue_rq() is caused, and kernel
panic.
So far, it is driver's responsibility to cover the race between timeout
and completion, so it seems supposed to be solved in driver in theory,
given driver has enough knowledge.
But it is really one common problem, lots of driver could have similar
issue, and could be hard to fix all affected drivers, even it isn't easy
for driver to handle the race. So David suggests this patch by draining
in-progress ->queue_rq() for solving this issue.