Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.19.131  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: reduce WARN to dev_dbg() in callback The warn is triggered on a known race condition, documented in the code above the test, that is correctly handled. Using WARN() hinders automated testing. Reducing severity.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: hif_usb: fix memory leak of remain_skbs hif_dev->remain_skb is allocated and used exclusively in ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is processed and subsequently freed (in error paths) only during the next call of ath9k_hif_usb_rx_stream(). So, if the urbs are deallocated between those two calls due to the device deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream() is not called next time and the allocated remain_skb is leaked. Our local Syzkaller instance was able to trigger that. remain_skb makes sense when receiving two consecutive urbs which are logically linked together, i.e. a specific data field from the first skb indicates a cached skb to be allocated, memcpy'd with some data and subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs deallocation supposedly makes that link irrelevant so we need to free the cached skb in those cases. Fix the leak by introducing a function to explicitly free remain_skb (if it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL when it has not been allocated at all (hif_dev struct is kzalloced) or when it has been processed in next call to ath9k_hif_usb_rx_stream(). Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: media: radio-shark: Add endpoint checks The syzbot fuzzer was able to provoke a WARNING from the radio-shark2 driver: ------------[ cut here ]------------ usb 1-1: BOGUS urb xfer, pipe 1 != type 3 WARNING: CPU: 0 PID: 3271 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504 Modules linked in: CPU: 0 PID: 3271 Comm: kworker/0:3 Not tainted 6.1.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504 Code: 7c 24 18 e8 00 36 ea fb 48 8b 7c 24 18 e8 36 1c 02 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 b6 90 8a e8 9a 29 b8 03 <0f> 0b e9 58 f8 ff ff e8 d2 35 ea fb 48 81 c5 c0 05 00 00 e9 84 f7 RSP: 0018:ffffc90003876dd0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: ffff8880750b0040 RSI: ffffffff816152b8 RDI: fffff5200070edac RBP: ffff8880172d81e0 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000001 R13: ffff8880285c5040 R14: 0000000000000002 R15: ffff888017158200 FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffe03235b90 CR3: 000000000bc8e000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58 usb_bulk_msg+0x226/0x550 drivers/usb/core/message.c:387 shark_write_reg+0x1ff/0x2e0 drivers/media/radio/radio-shark2.c:88 ... The problem was caused by the fact that the driver does not check whether the endpoints it uses are actually present and have the appropriate types. This can be fixed by adding a simple check of these endpoints (and similarly for the radio-shark driver).
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: fix wrong ct->timeout value (struct nf_conn)->timeout is an interval before the conntrack confirmed. After confirmed, it becomes a timestamp. It is observed that timeout of an unconfirmed conntrack: - Set by calling ctnetlink_change_timeout(). As a result, `nfct_time_stamp` was wrongly added to `ct->timeout` twice. - Get by calling ctnetlink_dump_timeout(). As a result, `nfct_time_stamp` was wrongly subtracted. Call Trace: <TASK> dump_stack_lvl ctnetlink_dump_timeout __ctnetlink_glue_build ctnetlink_glue_build __nfqnl_enqueue_packet nf_queue nf_hook_slow ip_mc_output ? __pfx_ip_finish_output ip_send_skb ? __pfx_dst_output udp_send_skb udp_sendmsg ? __pfx_ip_generic_getfrag sock_sendmsg Separate the 2 cases in: - Setting `ct->timeout` in __nf_ct_set_timeout(). - Getting `ct->timeout` in ctnetlink_dump_timeout(). Pablo appends: Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is set on, otherwise conntrack creation via ctnetlink breaks. Note that the problem described in this patch occurs since the introduction of the nfnetlink_queue conntrack support, select a sufficiently old Fixes: tag for -stable kernel to pick up this fix.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov772x: Fix memleak in ov772x_probe() A memory leak was reported when testing ov772x with bpf mock device: AssertionError: unreferenced object 0xffff888109afa7a8 (size 8): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 8 bytes): 80 22 88 15 81 88 ff ff ."...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<00000000faf48134>] v4l2_ctrl_handler_init_class+0x11d/0x180 [videodev] [<00000000da376937>] ov772x_probe+0x1c3/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 [<00000000a9f2159d>] of_i2c_notify+0x100/0x160 unreferenced object 0xffff888119825c00 (size 256): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 32 bytes): 00 b4 a5 17 81 88 ff ff 00 5e 82 19 81 88 ff ff .........^...... 10 5c 82 19 81 88 ff ff 10 5c 82 19 81 88 ff ff .\.......\...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<0000000073d88e0b>] v4l2_ctrl_new.cold+0x19b/0x86f [videodev] [<00000000b1f576fb>] v4l2_ctrl_new_std+0x16f/0x210 [videodev] [<00000000caf7ac99>] ov772x_probe+0x1fa/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 The reason is that if priv->hdl.error is set, ov772x_probe() jumps to the error_mutex_destroy without doing v4l2_ctrl_handler_free(), and all resources allocated in v4l2_ctrl_handler_init() and v4l2_ctrl_new_std() are leaked.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Grab sas_dev lock when traversing the members of sas_dev.list When freeing slots in function slot_complete_v3_hw(), it is possible that sas_dev.list is being traversed elsewhere, and it may trigger a NULL pointer exception, such as follows: ==>cq thread ==>scsi_eh_6 ==>scsi_error_handler() ==>sas_eh_handle_sas_errors() ==>sas_scsi_find_task() ==>lldd_abort_task() ==>slot_complete_v3_hw() ==>hisi_sas_abort_task() ==>hisi_sas_slot_task_free() ==>dereg_device_v3_hw() ==>list_del_init() ==>list_for_each_entry_safe() [ 7165.434918] sas: Enter sas_scsi_recover_host busy: 32 failed: 32 [ 7165.434926] sas: trying to find task 0x00000000769b5ba5 [ 7165.434927] sas: sas_scsi_find_task: aborting task 0x00000000769b5ba5 [ 7165.434940] hisi_sas_v3_hw 0000:b4:02.0: slot complete: task(00000000769b5ba5) aborted [ 7165.434964] hisi_sas_v3_hw 0000:b4:02.0: slot complete: task(00000000c9f7aa07) ignored [ 7165.434965] hisi_sas_v3_hw 0000:b4:02.0: slot complete: task(00000000e2a1cf01) ignored [ 7165.434968] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 7165.434972] hisi_sas_v3_hw 0000:b4:02.0: slot complete: task(0000000022d52d93) ignored [ 7165.434975] hisi_sas_v3_hw 0000:b4:02.0: slot complete: task(0000000066a7516c) ignored [ 7165.434976] Mem abort info: [ 7165.434982] ESR = 0x96000004 [ 7165.434991] Exception class = DABT (current EL), IL = 32 bits [ 7165.434992] SET = 0, FnV = 0 [ 7165.434993] EA = 0, S1PTW = 0 [ 7165.434994] Data abort info: [ 7165.434994] ISV = 0, ISS = 0x00000004 [ 7165.434995] CM = 0, WnR = 0 [ 7165.434997] user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000f29543f2 [ 7165.434998] [0000000000000000] pgd=0000000000000000 [ 7165.435003] Internal error: Oops: 96000004 [#1] SMP [ 7165.439863] Process scsi_eh_6 (pid: 4109, stack limit = 0x00000000c43818d5) [ 7165.468862] pstate: 00c00009 (nzcv daif +PAN +UAO) [ 7165.473637] pc : dereg_device_v3_hw+0x68/0xa8 [hisi_sas_v3_hw] [ 7165.479443] lr : dereg_device_v3_hw+0x2c/0xa8 [hisi_sas_v3_hw] [ 7165.485247] sp : ffff00001d623bc0 [ 7165.488546] x29: ffff00001d623bc0 x28: ffffa027d03b9508 [ 7165.493835] x27: ffff80278ed50af0 x26: ffffa027dd31e0a8 [ 7165.499123] x25: ffffa027d9b27f88 x24: ffffa027d9b209f8 [ 7165.504411] x23: ffffa027c45b0d60 x22: ffff80278ec07c00 [ 7165.509700] x21: 0000000000000008 x20: ffffa027d9b209f8 [ 7165.514988] x19: ffffa027d9b27f88 x18: ffffffffffffffff [ 7165.520276] x17: 0000000000000000 x16: 0000000000000000 [ 7165.525564] x15: ffff0000091d9708 x14: ffff0000093b7dc8 [ 7165.530852] x13: ffff0000093b7a23 x12: 6e7265746e692067 [ 7165.536140] x11: 0000000000000000 x10: 0000000000000bb0 [ 7165.541429] x9 : ffff00001d6238f0 x8 : ffffa027d877af00 [ 7165.546718] x7 : ffffa027d6329600 x6 : ffff7e809f58ca00 [ 7165.552006] x5 : 0000000000001f8a x4 : 000000000000088e [ 7165.557295] x3 : ffffa027d9b27fa8 x2 : 0000000000000000 [ 7165.562583] x1 : 0000000000000000 x0 : 000000003000188e [ 7165.567872] Call trace: [ 7165.570309] dereg_device_v3_hw+0x68/0xa8 [hisi_sas_v3_hw] [ 7165.575775] hisi_sas_abort_task+0x248/0x358 [hisi_sas_main] [ 7165.581415] sas_eh_handle_sas_errors+0x258/0x8e0 [libsas] [ 7165.586876] sas_scsi_recover_host+0x134/0x458 [libsas] [ 7165.592082] scsi_error_handler+0xb4/0x488 [ 7165.596163] kthread+0x134/0x138 [ 7165.599380] ret_from_fork+0x10/0x18 [ 7165.602940] Code: d5033e9f b9000040 aa0103e2 eb03003f (f9400021) [ 7165.609004] kernel fault(0x1) notification starting on CPU 75 [ 7165.700728] ---[ end trace fc042cbbea224efc ]--- [ 7165.705326] Kernel panic - not syncing: Fatal exception To fix the issue, grab sas_dev lock when traversing the members of sas_dev.list in dereg_device_v3_hw() and hisi_sas_release_tasks() to avoid concurrency of adding and deleting member. When ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request() This patch fixes a shift-out-of-bounds in brcmfmac that occurs in BIT(chiprev) when a 'chiprev' provided by the device is too large. It should also not be equal to or greater than BITS_PER_TYPE(u32) as we do bitwise AND with a u32 variable and BIT(chiprev). The patch adds a check that makes the function return NULL if that is the case. Note that the NULL case is later handled by the bus-specific caller, brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example. Found by a modified version of syzkaller. UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c shift exponent 151055786 is too large for 64-bit type 'long unsigned int' CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d ubsan_epilogue+0x5/0x40 __ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb ? lock_chain_count+0x20/0x20 brcmf_fw_alloc_request.cold+0x19/0x3ea ? brcmf_fw_get_firmwares+0x250/0x250 ? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0 brcmf_usb_get_fwname+0x114/0x1a0 ? brcmf_usb_reset_resume+0x120/0x120 ? number+0x6c4/0x9a0 brcmf_c_process_clm_blob+0x168/0x590 ? put_dec+0x90/0x90 ? enable_ptr_key_workfn+0x20/0x20 ? brcmf_common_pd_remove+0x50/0x50 ? rcu_read_lock_sched_held+0xa1/0xd0 brcmf_c_preinit_dcmds+0x673/0xc40 ? brcmf_c_set_joinpref_default+0x100/0x100 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lock_acquire+0x19d/0x4e0 ? find_held_lock+0x2d/0x110 ? brcmf_usb_deq+0x1cc/0x260 ? mark_held_locks+0x9f/0xe0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? _raw_spin_unlock_irqrestore+0x47/0x50 ? trace_hardirqs_on+0x1c/0x120 ? brcmf_usb_deq+0x1a7/0x260 ? brcmf_usb_rx_fill_all+0x5a/0xf0 brcmf_attach+0x246/0xd40 ? wiphy_new_nm+0x1476/0x1d50 ? kmemdup+0x30/0x40 brcmf_usb_probe+0x12de/0x1690 ? brcmf_usbdev_qinit.constprop.0+0x470/0x470 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 ? usb_match_id.part.0+0x88/0xc0 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __mutex_unlock_slowpath+0xe7/0x660 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_set_configuration+0x984/0x1770 ? kernfs_create_link+0x175/0x230 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 ? driver_allows_async_probing+0x120/0x120 bus_for_each_drv+0x123/0x1a0 ? bus_rescan_devices+0x20/0x20 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 ? trace_hardirqs_on+0x1c/0x120 __device_attach+0x207/0x330 ? device_bind_driver+0xb0/0xb0 ? kobject_uevent_env+0x230/0x12c0 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 ? __fw_devlink_link_to_suppliers+0x550/0x550 usb_new_device.cold+0x463/0xf66 ? hub_disconnect+0x400/0x400 ? _raw_spin_unlock_irq+0x24/0x30 hub_event+0x10d5/0x3330 ? hub_port_debounce+0x280/0x280 ? __lock_acquire+0x1671/0x5790 ? wq_calc_node_cpumask+0x170/0x2a0 ? lock_release+0x640/0x640 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x873/0x13e0 ? lock_release+0x640/0x640 ? pwq_dec_nr_in_flight+0x320/0x320 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x8b/0xd10 ? __kthread_parkme+0xd9/0x1d0 ? pr ---truncated---
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: blk-mq: use quiesced elevator switch when reinitializing queues The hctx's run_work may be racing with the elevator switch when reinitializing hardware queues. The queue is merely frozen in this context, but that only prevents requests from allocating and doesn't stop the hctx work from running. The work may get an elevator pointer that's being torn down, and can result in use-after-free errors and kernel panics (example below). Use the quiesced elevator switch instead, and make the previous one static since it is now only used locally. nvme nvme0: resetting controller nvme nvme0: 32/0/0 default/read/poll queues BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0 Oops: 0000 [#1] SMP PTI Workqueue: kblockd blk_mq_run_work_fn RIP: 0010:kyber_has_work+0x29/0x70 ... Call Trace: __blk_mq_do_dispatch_sched+0x83/0x2b0 __blk_mq_sched_dispatch_requests+0x12e/0x170 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x2b/0x50 process_one_work+0x1ef/0x380 worker_thread+0x2d/0x3e0
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: blk-iolatency: Fix memory leak on add_disk() failures When a gendisk is successfully initialized but add_disk() fails such as when a loop device has invalid number of minor device numbers specified, blkcg_init_disk() is called during init and then blkcg_exit_disk() during error handling. Unfortunately, iolatency gets initialized in the former but doesn't get cleaned up in the latter. This is because, in non-error cases, the cleanup is performed by del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos policies, iolatency being one of them, can only be activated once the disk is fully registered and visible. That assumption is true for wbt and iocost, but not so for iolatency as it gets initialized before add_disk() is called. It is desirable to lazy-init rq_qos policies because they are optional features and add to hot path overhead once initialized - each IO has to walk all the registered rq_qos policies. So, we want to switch iolatency to lazy init too. However, that's a bigger change. As a fix for the immediate problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk(). This is safe because duplicate calls to rq_qos_exit() become noop's.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07
In the Linux kernel, the following vulnerability has been resolved: media: solo6x10: fix possible memory leak in solo_sysfs_init() If device_register() returns error in solo_sysfs_init(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-07


Contact Us

Shodan ® - All rights reserved