In the Linux kernel, the following vulnerability has been resolved:
wifi: ath6kl: reduce WARN to dev_dbg() in callback
The warn is triggered on a known race condition, documented in the code above
the test, that is correctly handled. Using WARN() hinders automated testing.
Reducing severity.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of remain_skbs
hif_dev->remain_skb is allocated and used exclusively in
ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is
processed and subsequently freed (in error paths) only during the next
call of ath9k_hif_usb_rx_stream().
So, if the urbs are deallocated between those two calls due to the device
deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream()
is not called next time and the allocated remain_skb is leaked. Our local
Syzkaller instance was able to trigger that.
remain_skb makes sense when receiving two consecutive urbs which are
logically linked together, i.e. a specific data field from the first skb
indicates a cached skb to be allocated, memcpy'd with some data and
subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs
deallocation supposedly makes that link irrelevant so we need to free the
cached skb in those cases.
Fix the leak by introducing a function to explicitly free remain_skb (if
it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL
when it has not been allocated at all (hif_dev struct is kzalloced) or
when it has been processed in next call to ath9k_hif_usb_rx_stream().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: fix wrong ct->timeout value
(struct nf_conn)->timeout is an interval before the conntrack
confirmed. After confirmed, it becomes a timestamp.
It is observed that timeout of an unconfirmed conntrack:
- Set by calling ctnetlink_change_timeout(). As a result,
`nfct_time_stamp` was wrongly added to `ct->timeout` twice.
- Get by calling ctnetlink_dump_timeout(). As a result,
`nfct_time_stamp` was wrongly subtracted.
Call Trace:
<TASK>
dump_stack_lvl
ctnetlink_dump_timeout
__ctnetlink_glue_build
ctnetlink_glue_build
__nfqnl_enqueue_packet
nf_queue
nf_hook_slow
ip_mc_output
? __pfx_ip_finish_output
ip_send_skb
? __pfx_dst_output
udp_send_skb
udp_sendmsg
? __pfx_ip_generic_getfrag
sock_sendmsg
Separate the 2 cases in:
- Setting `ct->timeout` in __nf_ct_set_timeout().
- Getting `ct->timeout` in ctnetlink_dump_timeout().
Pablo appends:
Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is
set on, otherwise conntrack creation via ctnetlink breaks.
Note that the problem described in this patch occurs since the
introduction of the nfnetlink_queue conntrack support, select a
sufficiently old Fixes: tag for -stable kernel to pick up this fix.
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix potential shift-out-of-bounds in brcmf_fw_alloc_request()
This patch fixes a shift-out-of-bounds in brcmfmac that occurs in
BIT(chiprev) when a 'chiprev' provided by the device is too large.
It should also not be equal to or greater than BITS_PER_TYPE(u32)
as we do bitwise AND with a u32 variable and BIT(chiprev). The patch
adds a check that makes the function return NULL if that is the case.
Note that the NULL case is later handled by the bus-specific caller,
brcmf_usb_probe_cb() or brcmf_usb_reset_resume(), for example.
Found by a modified version of syzkaller.
UBSAN: shift-out-of-bounds in drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c
shift exponent 151055786 is too large for 64-bit type 'long unsigned int'
CPU: 0 PID: 1885 Comm: kworker/0:2 Tainted: G O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
ubsan_epilogue+0x5/0x40
__ubsan_handle_shift_out_of_bounds.cold+0x53/0xdb
? lock_chain_count+0x20/0x20
brcmf_fw_alloc_request.cold+0x19/0x3ea
? brcmf_fw_get_firmwares+0x250/0x250
? brcmf_usb_ioctl_resp_wait+0x1a7/0x1f0
brcmf_usb_get_fwname+0x114/0x1a0
? brcmf_usb_reset_resume+0x120/0x120
? number+0x6c4/0x9a0
brcmf_c_process_clm_blob+0x168/0x590
? put_dec+0x90/0x90
? enable_ptr_key_workfn+0x20/0x20
? brcmf_common_pd_remove+0x50/0x50
? rcu_read_lock_sched_held+0xa1/0xd0
brcmf_c_preinit_dcmds+0x673/0xc40
? brcmf_c_set_joinpref_default+0x100/0x100
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lock_acquire+0x19d/0x4e0
? find_held_lock+0x2d/0x110
? brcmf_usb_deq+0x1cc/0x260
? mark_held_locks+0x9f/0xe0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? _raw_spin_unlock_irqrestore+0x47/0x50
? trace_hardirqs_on+0x1c/0x120
? brcmf_usb_deq+0x1a7/0x260
? brcmf_usb_rx_fill_all+0x5a/0xf0
brcmf_attach+0x246/0xd40
? wiphy_new_nm+0x1476/0x1d50
? kmemdup+0x30/0x40
brcmf_usb_probe+0x12de/0x1690
? brcmf_usbdev_qinit.constprop.0+0x470/0x470
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
? usb_match_id.part.0+0x88/0xc0
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __mutex_unlock_slowpath+0xe7/0x660
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_set_configuration+0x984/0x1770
? kernfs_create_link+0x175/0x230
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
? driver_allows_async_probing+0x120/0x120
bus_for_each_drv+0x123/0x1a0
? bus_rescan_devices+0x20/0x20
? lockdep_hardirqs_on_prepare+0x273/0x3e0
? trace_hardirqs_on+0x1c/0x120
__device_attach+0x207/0x330
? device_bind_driver+0xb0/0xb0
? kobject_uevent_env+0x230/0x12c0
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
? __fw_devlink_link_to_suppliers+0x550/0x550
usb_new_device.cold+0x463/0xf66
? hub_disconnect+0x400/0x400
? _raw_spin_unlock_irq+0x24/0x30
hub_event+0x10d5/0x3330
? hub_port_debounce+0x280/0x280
? __lock_acquire+0x1671/0x5790
? wq_calc_node_cpumask+0x170/0x2a0
? lock_release+0x640/0x640
? rcu_read_lock_sched_held+0xa1/0xd0
? rcu_read_lock_bh_held+0xb0/0xb0
? lockdep_hardirqs_on_prepare+0x273/0x3e0
process_one_work+0x873/0x13e0
? lock_release+0x640/0x640
? pwq_dec_nr_in_flight+0x320/0x320
? rwlock_bug.part.0+0x90/0x90
worker_thread+0x8b/0xd10
? __kthread_parkme+0xd9/0x1d0
? pr
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
blk-mq: use quiesced elevator switch when reinitializing queues
The hctx's run_work may be racing with the elevator switch when
reinitializing hardware queues. The queue is merely frozen in this
context, but that only prevents requests from allocating and doesn't
stop the hctx work from running. The work may get an elevator pointer
that's being torn down, and can result in use-after-free errors and
kernel panics (example below). Use the quiesced elevator switch instead,
and make the previous one static since it is now only used locally.
nvme nvme0: resetting controller
nvme nvme0: 32/0/0 default/read/poll queues
BUG: kernel NULL pointer dereference, address: 0000000000000008
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0
Oops: 0000 [#1] SMP PTI
Workqueue: kblockd blk_mq_run_work_fn
RIP: 0010:kyber_has_work+0x29/0x70
...
Call Trace:
__blk_mq_do_dispatch_sched+0x83/0x2b0
__blk_mq_sched_dispatch_requests+0x12e/0x170
blk_mq_sched_dispatch_requests+0x30/0x60
__blk_mq_run_hw_queue+0x2b/0x50
process_one_work+0x1ef/0x380
worker_thread+0x2d/0x3e0
In the Linux kernel, the following vulnerability has been resolved:
blk-iolatency: Fix memory leak on add_disk() failures
When a gendisk is successfully initialized but add_disk() fails such as when
a loop device has invalid number of minor device numbers specified,
blkcg_init_disk() is called during init and then blkcg_exit_disk() during
error handling. Unfortunately, iolatency gets initialized in the former but
doesn't get cleaned up in the latter.
This is because, in non-error cases, the cleanup is performed by
del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos
policies, iolatency being one of them, can only be activated once the disk
is fully registered and visible. That assumption is true for wbt and iocost,
but not so for iolatency as it gets initialized before add_disk() is called.
It is desirable to lazy-init rq_qos policies because they are optional
features and add to hot path overhead once initialized - each IO has to walk
all the registered rq_qos policies. So, we want to switch iolatency to lazy
init too. However, that's a bigger change. As a fix for the immediate
problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk().
This is safe because duplicate calls to rq_qos_exit() become noop's.
In the Linux kernel, the following vulnerability has been resolved:
media: solo6x10: fix possible memory leak in solo_sysfs_init()
If device_register() returns error in solo_sysfs_init(), the
name allocated by dev_set_name() need be freed. As comment of
device_register() says, it should use put_device() to give up
the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanup().