In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of remain_skbs
hif_dev->remain_skb is allocated and used exclusively in
ath9k_hif_usb_rx_stream(). It is implied that an allocated remain_skb is
processed and subsequently freed (in error paths) only during the next
call of ath9k_hif_usb_rx_stream().
So, if the urbs are deallocated between those two calls due to the device
deinitialization or suspend, it is possible that ath9k_hif_usb_rx_stream()
is not called next time and the allocated remain_skb is leaked. Our local
Syzkaller instance was able to trigger that.
remain_skb makes sense when receiving two consecutive urbs which are
logically linked together, i.e. a specific data field from the first skb
indicates a cached skb to be allocated, memcpy'd with some data and
subsequently processed in the next call to ath9k_hif_usb_rx_stream(). Urbs
deallocation supposedly makes that link irrelevant so we need to free the
cached skb in those cases.
Fix the leak by introducing a function to explicitly free remain_skb (if
it is not NULL) when the rx urbs have been deallocated. remain_skb is NULL
when it has not been allocated at all (hif_dev struct is kzalloced) or
when it has been processed in next call to ath9k_hif_usb_rx_stream().
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: fix wrong ct->timeout value
(struct nf_conn)->timeout is an interval before the conntrack
confirmed. After confirmed, it becomes a timestamp.
It is observed that timeout of an unconfirmed conntrack:
- Set by calling ctnetlink_change_timeout(). As a result,
`nfct_time_stamp` was wrongly added to `ct->timeout` twice.
- Get by calling ctnetlink_dump_timeout(). As a result,
`nfct_time_stamp` was wrongly subtracted.
Call Trace:
<TASK>
dump_stack_lvl
ctnetlink_dump_timeout
__ctnetlink_glue_build
ctnetlink_glue_build
__nfqnl_enqueue_packet
nf_queue
nf_hook_slow
ip_mc_output
? __pfx_ip_finish_output
ip_send_skb
? __pfx_dst_output
udp_send_skb
udp_sendmsg
? __pfx_ip_generic_getfrag
sock_sendmsg
Separate the 2 cases in:
- Setting `ct->timeout` in __nf_ct_set_timeout().
- Getting `ct->timeout` in ctnetlink_dump_timeout().
Pablo appends:
Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is
set on, otherwise conntrack creation via ctnetlink breaks.
Note that the problem described in this patch occurs since the
introduction of the nfnetlink_queue conntrack support, select a
sufficiently old Fixes: tag for -stable kernel to pick up this fix.
In the Linux kernel, the following vulnerability has been resolved:
media: coda: Add check for dcoda_iram_alloc
As the coda_iram_alloc may return NULL pointer,
it should be better to check the return value
in order to avoid NULL poineter dereference,
same as the others.
In the Linux kernel, the following vulnerability has been resolved:
mtd: lpddr2_nvm: Fix possible null-ptr-deref
It will cause null-ptr-deref when resource_size(add_range) invoked,
if platform_get_resource() returns NULL.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: avoid scheduling in rtas_os_term()
It's unsafe to use rtas_busy_delay() to handle a busy status from
the ibm,os-term RTAS function in rtas_os_term():
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
BUG: sleeping function called from invalid context at arch/powerpc/kernel/rtas.c:618
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
CPU: 7 PID: 1 Comm: swapper/0 Tainted: G D 6.0.0-rc5-02182-gf8553a572277-dirty #9
Call Trace:
[c000000007b8f000] [c000000001337110] dump_stack_lvl+0xb4/0x110 (unreliable)
[c000000007b8f040] [c0000000002440e4] __might_resched+0x394/0x3c0
[c000000007b8f0e0] [c00000000004f680] rtas_busy_delay+0x120/0x1b0
[c000000007b8f100] [c000000000052d04] rtas_os_term+0xb8/0xf4
[c000000007b8f180] [c0000000001150fc] pseries_panic+0x50/0x68
[c000000007b8f1f0] [c000000000036354] ppc_panic_platform_handler+0x34/0x50
[c000000007b8f210] [c0000000002303c4] notifier_call_chain+0xd4/0x1c0
[c000000007b8f2b0] [c0000000002306cc] atomic_notifier_call_chain+0xac/0x1c0
[c000000007b8f2f0] [c0000000001d62b8] panic+0x228/0x4d0
[c000000007b8f390] [c0000000001e573c] do_exit+0x140c/0x1420
[c000000007b8f480] [c0000000001e586c] make_task_dead+0xdc/0x200
Use rtas_busy_delay_time() instead, which signals without side effects
whether to attempt the ibm,os-term RTAS call again.
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix use-after-free on probe deferral
The bridge counter was never reset when tearing down the DRM device so
that stale pointers to deallocated structures would be accessed on the
next tear down (e.g. after a second late bind deferral).
Given enough bridges and a few probe deferrals this could currently also
lead to data beyond the bridge array being corrupted.
Patchwork: https://patchwork.freedesktop.org/patch/502665/