Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.15.17  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: cnic: Fix use-after-free bugs in cnic_delete_task The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(), which does not guarantee that the delayed work item 'delete_task' has fully completed if it was already running. Additionally, the delayed work item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after the cyclic work items have finished executing, a delayed work item may still exist in the workqueue. This leads to use-after-free scenarios where the cnic_dev is deallocated by cnic_free_dev(), while delete_task remains active and attempt to dereference cnic_dev in cnic_delete_task(). A typical race condition is illustrated below: CPU 0 (cleanup) | CPU 1 (delayed work callback) cnic_netdev_event() | cnic_stop_hw() | cnic_delete_task() cnic_cm_stop_bnx2x_hw() | ... cancel_delayed_work() | /* the queue_delayed_work() flush_workqueue() | executes after flush_workqueue()*/ | queue_delayed_work() cnic_free_dev(dev)//free | cnic_delete_task() //new instance | dev = cp->dev; //use Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure that the cyclic delayed work item is properly canceled and that any ongoing execution of the work item completes before the cnic_dev is deallocated. Furthermore, since cancel_delayed_work_sync() uses __flush_work(work, true) to synchronously wait for any currently executing instance of the work item to finish, the flush_workqueue() becomes redundant and should be removed. This bug was identified through static analysis. To reproduce the issue and validate the fix, I simulated the cnic PCI device in QEMU and introduced intentional delays — such as inserting calls to ssleep() within the cnic_delete_task() function — to increase the likelihood of triggering the bug.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: net: rfkill: gpio: Fix crash due to dereferencering uninitialized pointer Since commit 7d5e9737efda ("net: rfkill: gpio: get the name and type from device property") rfkill_find_type() gets called with the possibly uninitialized "const char *type_name;" local variable. On x86 systems when rfkill-gpio binds to a "BCM4752" or "LNV4752" acpi_device, the rfkill->type is set based on the ACPI acpi_device_id: rfkill->type = (unsigned)id->driver_data; and there is no "type" property so device_property_read_string() will fail and leave type_name uninitialized, leading to a potential crash. rfkill_find_type() does accept a NULL pointer, fix the potential crash by initializing type_name to NULL. Note likely sofar this has not been caught because: 1. Not many x86 machines actually have a "BCM4752"/"LNV4752" acpi_device 2. The stack happened to contain NULL where type_name is stored
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: dm-stripe: fix a possible integer overflow There's a possible integer overflow in stripe_io_hints if we have too large chunk size. Test if the overflow happened, and if it did, don't set limits->io_min and limits->io_opt;
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - Set merge to zero early in af_alg_sendmsg If an error causes af_alg_sendmsg to abort, ctx->merge may contain a garbage value from the previous loop. This may then trigger a crash on the next entry into af_alg_sendmsg when it attempts to do a merge that can't be done. Fix this by setting ctx->merge to zero near the start of the loop.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: PM / devfreq: Fix leak in devfreq_dev_release() srcu_init_notifier_head() allocates resources that need to be released with a srcu_cleanup_notifier_head() call. Reported by kmemleak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: media: v4l2-mem2mem: add lock to protect parameter num_rdy Getting below error when using KCSAN to check the driver. Adding lock to protect parameter num_rdy when getting the value with function: v4l2_m2m_num_src_bufs_ready/v4l2_m2m_num_dst_bufs_ready. kworker/u16:3: [name:report&]BUG: KCSAN: data-race in v4l2_m2m_buf_queue kworker/u16:3: [name:report&] kworker/u16:3: [name:report&]read-write to 0xffffff8105f35b94 of 1 bytes by task 20865 on cpu 7: kworker/u16:3:  v4l2_m2m_buf_queue+0xd8/0x10c
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix slab-out-of-bounds in ses_intf_remove() A fix for: BUG: KASAN: slab-out-of-bounds in ses_intf_remove+0x23f/0x270 [ses] Read of size 8 at addr ffff88a10d32e5d8 by task rmmod/12013 When edev->components is zero, accessing edev->component[0] members is wrong.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: nbd: fix incomplete validation of ioctl arg We tested and found an alarm caused by nbd_ioctl arg without verification. The UBSAN warning calltrace like below: UBSAN: Undefined behaviour in fs/buffer.c:1709:35 signed integer overflow: -9223372036854775808 - 1 cannot be represented in type 'long long int' CPU: 3 PID: 2523 Comm: syz-executor.0 Not tainted 4.19.90 #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x3f0 arch/arm64/kernel/time.c:78 show_stack+0x28/0x38 arch/arm64/kernel/traps.c:158 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x170/0x1dc lib/dump_stack.c:118 ubsan_epilogue+0x18/0xb4 lib/ubsan.c:161 handle_overflow+0x188/0x1dc lib/ubsan.c:192 __ubsan_handle_sub_overflow+0x34/0x44 lib/ubsan.c:206 __block_write_full_page+0x94c/0xa20 fs/buffer.c:1709 block_write_full_page+0x1f0/0x280 fs/buffer.c:2934 blkdev_writepage+0x34/0x40 fs/block_dev.c:607 __writepage+0x68/0xe8 mm/page-writeback.c:2305 write_cache_pages+0x44c/0xc70 mm/page-writeback.c:2240 generic_writepages+0xdc/0x148 mm/page-writeback.c:2329 blkdev_writepages+0x2c/0x38 fs/block_dev.c:2114 do_writepages+0xd4/0x250 mm/page-writeback.c:2344 The reason for triggering this warning is __block_write_full_page() -> i_size_read(inode) - 1 overflow. inode->i_size is assigned in __nbd_ioctl() -> nbd_set_size() -> bytesize. We think it is necessary to limit the size of arg to prevent errors. Moreover, __nbd_ioctl() -> nbd_add_socket(), arg will be cast to int. Assuming the value of arg is 0x80000000000000001) (on a 64-bit machine), it will become 1 after the coercion, which will return unexpected results. Fix it by adding checks to prevent passing in too large numbers.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: virtio-mmio: don't break lifecycle of vm_dev vm_dev has a separate lifecycle because it has a 'struct device' embedded. Thus, having a release callback for it is correct. Allocating the vm_dev struct with devres totally breaks this protection, though. Instead of waiting for the vm_dev release callback, the memory is freed when the platform_device is removed. Resulting in a use-after-free when finally the callback is to be called. To easily see the problem, compile the kernel with CONFIG_DEBUG_KOBJECT_RELEASE and unbind with sysfs. The fix is easy, don't use devres in this case. Found during my research about object lifetime problems.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: tipc: do not update mtu if msg_max is too small in mtu negotiation When doing link mtu negotiation, a malicious peer may send Activate msg with a very small mtu, e.g. 4 in Shuang's testing, without checking for the minimum mtu, l->mtu will be set to 4 in tipc_link_proto_rcv(), then n->links[bearer_id].mtu is set to 4294967228, which is a overflow of '4 - INT_H_SIZE - EMSG_OVERHEAD' in tipc_link_mss(). With tipc_link.mtu = 4, tipc_link_xmit() kept printing the warning: tipc: Too large msg, purging xmit list 1 5 0 40 4! tipc: Too large msg, purging xmit list 1 15 0 60 4! And with tipc_link_entry.mtu 4294967228, a huge skb was allocated in named_distribute(), and when purging it in tipc_link_xmit(), a crash was even caused: general protection fault, probably for non-canonical address 0x2100001011000dd: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Not tainted 6.3.0.neta #19 RIP: 0010:kfree_skb_list_reason+0x7e/0x1f0 Call Trace: <IRQ> skb_release_data+0xf9/0x1d0 kfree_skb_reason+0x40/0x100 tipc_link_xmit+0x57a/0x740 [tipc] tipc_node_xmit+0x16c/0x5c0 [tipc] tipc_named_node_up+0x27f/0x2c0 [tipc] tipc_node_write_unlock+0x149/0x170 [tipc] tipc_rcv+0x608/0x740 [tipc] tipc_udp_recv+0xdc/0x1f0 [tipc] udp_queue_rcv_one_skb+0x33e/0x620 udp_unicast_rcv_skb.isra.72+0x75/0x90 __udp4_lib_rcv+0x56d/0xc20 ip_protocol_deliver_rcu+0x100/0x2d0 This patch fixes it by checking the new mtu against tipc_bearer_min_mtu(), and not updating mtu if it is too small.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01


Contact Us

Shodan ® - All rights reserved