Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.329  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memory leak in alloc_wbufs() kmemleak reported a sequence of memory leaks, and show them as following: unreferenced object 0xffff8881575f8400 (size 1024): comm "mount", pid 19625, jiffies 4297119604 (age 20.383s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8176cecd>] __kmalloc+0x4d/0x150 [<ffffffffa0406b2b>] ubifs_mount+0x307b/0x7170 [ubifs] [<ffffffff819fa8fd>] legacy_get_tree+0xed/0x1d0 [<ffffffff81936f2d>] vfs_get_tree+0x7d/0x230 [<ffffffff819b2bd4>] path_mount+0xdd4/0x17b0 [<ffffffff819b37aa>] __x64_sys_mount+0x1fa/0x270 [<ffffffff83c14295>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff8881798a6e00 (size 512): comm "mount", pid 19677, jiffies 4297121912 (age 37.816s) hex dump (first 32 bytes): 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk backtrace: [<ffffffff8176cecd>] __kmalloc+0x4d/0x150 [<ffffffffa0418342>] ubifs_wbuf_init+0x52/0x480 [ubifs] [<ffffffffa0406ca5>] ubifs_mount+0x31f5/0x7170 [ubifs] [<ffffffff819fa8fd>] legacy_get_tree+0xed/0x1d0 [<ffffffff81936f2d>] vfs_get_tree+0x7d/0x230 [<ffffffff819b2bd4>] path_mount+0xdd4/0x17b0 [<ffffffff819b37aa>] __x64_sys_mount+0x1fa/0x270 [<ffffffff83c14295>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 The problem is that the ubifs_wbuf_init() returns an error in the loop which in the alloc_wbufs(), then the wbuf->buf and wbuf->inodes that were successfully alloced before are not freed. Fix it by adding error hanging path in alloc_wbufs() which frees the memory alloced before when ubifs_wbuf_init() returns an error.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: media: cx23885: Fix a null-ptr-deref bug in buffer_prepare() and buffer_finish() When the driver calls cx23885_risc_buffer() to prepare the buffer, the function call dma_alloc_coherent may fail, resulting in a empty buffer risc->cpu. Later when we free the buffer or access the buffer, null ptr deref is triggered. This bug is similar to the following one: https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71. We believe the bug can be also dynamically triggered from user side. Similarly, we fix this by checking the return value of cx23885_risc_buffer() and the value of risc->cpu before buffer free.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8723bs: fix potential memory leak in rtw_init_drv_sw() In rtw_init_drv_sw(), there are various init functions are called to populate the padapter structure and some checks for their return value. However, except for the first one error path, the other five error paths do not properly release the previous allocated resources, which leads to various memory leaks. This patch fixes them and keeps the success and error separate. Note that these changes keep the form of `rtw_init_drv_sw()` in "drivers/staging/r8188eu/os_dep/os_intfs.c". As there is no proper device to test with, no runtime testing was performed.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: gpiolib: cdev: fix NULL-pointer dereferences There are several places where we can crash the kernel by requesting lines, unbinding the GPIO device, then calling any of the system calls relevant to the GPIO character device's annonymous file descriptors: ioctl(), read(), poll(). While I observed it with the GPIO simulator, it will also happen for any of the GPIO devices that can be hot-unplugged - for instance any HID GPIO expander (e.g. CP2112). This affects both v1 and v2 uAPI. This fixes it partially by checking if gdev->chip is not NULL but it doesn't entirely remedy the situation as we still have a race condition in which another thread can remove the device after the check.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix resolving backrefs for inline extent followed by prealloc If a file consists of an inline extent followed by a regular or prealloc extent, then a legitimate attempt to resolve a logical address in the non-inline region will result in add_all_parents reading the invalid offset field of the inline extent. If the inline extent item is placed in the leaf eb s.t. it is the first item, attempting to access the offset field will not only be meaningless, it will go past the end of the eb and cause this panic: [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8 [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199 [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110 [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202 [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000 [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001 [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918 [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd [17.663617] FS: 00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000 [17.666525] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0 [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [17.676034] PKRU: 55555554 [17.677004] Call Trace: [17.677877] add_all_parents+0x276/0x480 [17.679325] find_parent_nodes+0xfae/0x1590 [17.680771] btrfs_find_all_leafs+0x5e/0xa0 [17.682217] iterate_extent_inodes+0xce/0x260 [17.683809] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.685597] ? iterate_inodes_from_logical+0xa1/0xd0 [17.687404] iterate_inodes_from_logical+0xa1/0xd0 [17.689121] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.691010] btrfs_ioctl_logical_to_ino+0x131/0x190 [17.692946] btrfs_ioctl+0x104a/0x2f60 [17.694384] ? selinux_file_ioctl+0x182/0x220 [17.695995] ? __x64_sys_ioctl+0x84/0xc0 [17.697394] __x64_sys_ioctl+0x84/0xc0 [17.698697] do_syscall_64+0x33/0x40 [17.700017] entry_SYSCALL_64_after_hwframe+0x44/0xae [17.701753] RIP: 0033:0x7f64e72761b7 [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7 [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003 [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60 [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001 [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0 [17.724839] Modules linked in: Fix the bug by detecting the inline extent item in add_all_parents and skipping to the next extent item.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: xfrm: Reinject transport-mode packets through workqueue The following warning is displayed when the tcp6-multi-diffip11 stress test case of the LTP test suite is tested: watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [ns-tcpserver:48198] CPU: 0 PID: 48198 Comm: ns-tcpserver Kdump: loaded Not tainted 6.0.0-rc6+ #39 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : des3_ede_encrypt+0x27c/0x460 [libdes] lr : 0x3f sp : ffff80000ceaa1b0 x29: ffff80000ceaa1b0 x28: ffff0000df056100 x27: ffff0000e51e5280 x26: ffff80004df75030 x25: ffff0000e51e4600 x24: 000000000000003b x23: 0000000000802080 x22: 000000000000003d x21: 0000000000000038 x20: 0000000080000020 x19: 000000000000000a x18: 0000000000000033 x17: ffff0000e51e4780 x16: ffff80004e2d1448 x15: ffff80004e2d1248 x14: ffff0000e51e4680 x13: ffff80004e2d1348 x12: ffff80004e2d1548 x11: ffff80004e2d1848 x10: ffff80004e2d1648 x9 : ffff80004e2d1748 x8 : ffff80004e2d1948 x7 : 000000000bcaf83d x6 : 000000000000001b x5 : ffff80004e2d1048 x4 : 00000000761bf3bf x3 : 000000007f1dd0a3 x2 : ffff0000e51e4780 x1 : ffff0000e3b9a2f8 x0 : 00000000db44e872 Call trace: des3_ede_encrypt+0x27c/0x460 [libdes] crypto_des3_ede_encrypt+0x1c/0x30 [des_generic] crypto_cbc_encrypt+0x148/0x190 crypto_skcipher_encrypt+0x2c/0x40 crypto_authenc_encrypt+0xc8/0xfc [authenc] crypto_aead_encrypt+0x2c/0x40 echainiv_encrypt+0x144/0x1a0 [echainiv] crypto_aead_encrypt+0x2c/0x40 esp6_output_tail+0x1c8/0x5d0 [esp6] esp6_output+0x120/0x278 [esp6] xfrm_output_one+0x458/0x4ec xfrm_output_resume+0x6c/0x1f0 xfrm_output+0xac/0x4ac __xfrm6_output+0x130/0x270 xfrm6_output+0x60/0xec ip6_xmit+0x2ec/0x5bc inet6_csk_xmit+0xbc/0x10c __tcp_transmit_skb+0x460/0x8c0 tcp_write_xmit+0x348/0x890 __tcp_push_pending_frames+0x44/0x110 tcp_rcv_established+0x3c8/0x720 tcp_v6_do_rcv+0xdc/0x4a0 tcp_v6_rcv+0xc24/0xcb0 ip6_protocol_deliver_rcu+0xf0/0x574 ip6_input_finish+0x48/0x7c ip6_input+0x48/0xc0 ip6_rcv_finish+0x80/0x9c xfrm_trans_reinject+0xb0/0xf4 tasklet_action_common.constprop.0+0xf8/0x134 tasklet_action+0x30/0x3c __do_softirq+0x128/0x368 do_softirq+0xb4/0xc0 __local_bh_enable_ip+0xb0/0xb4 put_cpu_fpsimd_context+0x40/0x70 kernel_neon_end+0x20/0x40 sha1_base_do_update.constprop.0.isra.0+0x11c/0x140 [sha1_ce] sha1_ce_finup+0x94/0x110 [sha1_ce] crypto_shash_finup+0x34/0xc0 hmac_finup+0x48/0xe0 crypto_shash_finup+0x34/0xc0 shash_digest_unaligned+0x74/0x90 crypto_shash_digest+0x4c/0x9c shash_ahash_digest+0xc8/0xf0 shash_async_digest+0x28/0x34 crypto_ahash_digest+0x48/0xcc crypto_authenc_genicv+0x88/0xcc [authenc] crypto_authenc_encrypt+0xd8/0xfc [authenc] crypto_aead_encrypt+0x2c/0x40 echainiv_encrypt+0x144/0x1a0 [echainiv] crypto_aead_encrypt+0x2c/0x40 esp6_output_tail+0x1c8/0x5d0 [esp6] esp6_output+0x120/0x278 [esp6] xfrm_output_one+0x458/0x4ec xfrm_output_resume+0x6c/0x1f0 xfrm_output+0xac/0x4ac __xfrm6_output+0x130/0x270 xfrm6_output+0x60/0xec ip6_xmit+0x2ec/0x5bc inet6_csk_xmit+0xbc/0x10c __tcp_transmit_skb+0x460/0x8c0 tcp_write_xmit+0x348/0x890 __tcp_push_pending_frames+0x44/0x110 tcp_push+0xb4/0x14c tcp_sendmsg_locked+0x71c/0xb64 tcp_sendmsg+0x40/0x6c inet6_sendmsg+0x4c/0x80 sock_sendmsg+0x5c/0x6c __sys_sendto+0x128/0x15c __arm64_sys_sendto+0x30/0x40 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0x170/0x194 do_el0_svc+0x38/0x4c el0_svc+0x28/0xe0 el0t_64_sync_handler+0xbc/0x13c el0t_64_sync+0x180/0x184 Get softirq info by bcc tool: ./softirqs -NT 10 Tracing soft irq event time... Hit Ctrl-C to end. 15:34:34 SOFTIRQ TOTAL_nsecs block 158990 timer 20030920 sched 46577080 net_rx 676746820 tasklet 9906067650 15:34:45 SOFTIRQ TOTAL_nsecs block 86100 sched 38849790 net_rx ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8173: Enable IRQ when pdata is ready If the device does not come straight from reset, we might receive an IRQ before we are ready to handle it. [ 2.334737] Unable to handle kernel read from unreadable memory at virtual address 00000000000001e4 [ 2.522601] Call trace: [ 2.525040] regmap_read+0x1c/0x80 [ 2.528434] mt8173_afe_irq_handler+0x40/0xf0 ... [ 2.598921] start_kernel+0x338/0x42c
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: scsi: libsas: Fix use-after-free bug in smp_execute_task_sg() When executing SMP task failed, the smp_execute_task_sg() calls del_timer() to delete "slow_task->timer". However, if the timer handler sas_task_internal_timedout() is running, the del_timer() in smp_execute_task_sg() will not stop it and a UAF will happen. The process is shown below: (thread 1) | (thread 2) smp_execute_task_sg() | sas_task_internal_timedout() ... | del_timer() | ... | ... sas_free_task(task) | kfree(task->slow_task) //FREE| | task->slow_task->... //USE Fix by calling del_timer_sync() in smp_execute_task_sg(), which makes sure the timer handler have finished before the "task->slow_task" is deallocated.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix UBSAN shift-out-of-bounds warning If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up doing a shift operation where the number of bits shifted equals number of bits in the operand. This behaviour is undefined. Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the count is >= number of bits in the operand. Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-01
In the Linux kernel, the following vulnerability has been resolved: ceph: fix race condition validating r_parent before applying state Add validation to ensure the cached parent directory inode matches the directory info in MDS replies. This prevents client-side race conditions where concurrent operations (e.g. rename) cause r_parent to become stale between request initiation and reply processing, which could lead to applying state changes to incorrect directory inodes. [ idryomov: folded a kerneldoc fixup and a follow-up fix from Alex to move CEPH_CAP_PIN reference when r_parent is updated: When the parent directory lock is not held, req->r_parent can become stale and is updated to point to the correct inode. However, the associated CEPH_CAP_PIN reference was not being adjusted. The CEPH_CAP_PIN is a reference on an inode that is tracked for accounting purposes. Moving this pin is important to keep the accounting balanced. When the pin was not moved from the old parent to the new one, it created two problems: The reference on the old, stale parent was never released, causing a reference leak. A reference for the new parent was never acquired, creating the risk of a reference underflow later in ceph_mdsc_release_request(). This patch corrects the logic by releasing the pin from the old parent and acquiring it for the new parent when r_parent is switched. This ensures reference accounting stays balanced. ]
CVSS Score
4.7
EPSS Score
0.0
Published
2025-10-01


Contact Us

Shodan ® - All rights reserved