The PKCS#7 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly handle a lack of outer ContentInfo, which allows attackers to cause a denial of service (NULL pointer dereference and application crash) by leveraging an application that processes arbitrary PKCS#7 data and providing malformed data with ASN.1 encoding, related to crypto/pkcs7/pk7_doit.c and crypto/pkcs7/pk7_lib.c.
The X509_to_X509_REQ function in crypto/x509/x509_req.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow attackers to cause a denial of service (NULL pointer dereference and application crash) via an invalid certificate key.
The ASN1_item_ex_d2i function in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not reinitialize CHOICE and ADB data structures, which might allow attackers to cause a denial of service (invalid write operation and memory corruption) by leveraging an application that relies on ASN.1 structure reuse.
The ASN1_TYPE_cmp function in crypto/asn1/a_type.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly perform boolean-type comparisons, which allows remote attackers to cause a denial of service (invalid read operation and application crash) via a crafted X.509 certificate to an endpoint that uses the certificate-verification feature.
Use-after-free vulnerability in the d2i_ECPrivateKey function in crypto/ec/ec_asn1.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via a malformed Elliptic Curve (EC) private-key file that is improperly handled during import.
Race condition in the ssl3_read_bytes function in s3_pkt.c in OpenSSL through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, allows remote attackers to inject data across sessions or cause a denial of service (use-after-free and parsing error) via an SSL connection in a multithreaded environment.
The Montgomery ladder implementation in OpenSSL through 1.0.0l does not ensure that certain swap operations have a constant-time behavior, which makes it easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache side-channel attack.
The ssl_get_algorithm2 function in ssl/s3_lib.c in OpenSSL before 1.0.2 obtains a certain version number from an incorrect data structure, which allows remote attackers to cause a denial of service (daemon crash) via crafted traffic from a TLS 1.2 client.
The Server Gated Cryptography (SGC) implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f does not properly handle handshake restarts, which allows remote attackers to cause a denial of service (CPU consumption) via unspecified vectors.
The GOST ENGINE in OpenSSL before 1.0.0f does not properly handle invalid parameters for the GOST block cipher, which allows remote attackers to cause a denial of service (daemon crash) via crafted data from a TLS client.