Vulnerabilities
Vulnerable Software
Xen:  >> Xen  >> 14.4  Security Vulnerabilities
x86 pv: Race condition in typeref acquisition Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, the logic for acquiring a type reference has a race condition, whereby a safely TLB flush is issued too early and creates a window where the guest can re-establish the read/write mapping before writeability is prohibited.
CVSS Score
6.4
EPSS Score
0.0
Published
2022-06-09
x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe.
CVSS Score
6.7
EPSS Score
0.0
Published
2022-06-09
Insufficient cleanup of passed-through device IRQs The management of IRQs associated with physical devices exposed to x86 HVM guests involves an iterative operation in particular when cleaning up after the guest's use of the device. In the case where an interrupt is not quiescent yet at the time this cleanup gets invoked, the cleanup attempt may be scheduled to be retried. When multiple interrupts are involved, this scheduling of a retry may get erroneously skipped. At the same time pointers may get cleared (resulting in a de-reference of NULL) and freed (resulting in a use-after-free), while other code would continue to assume them to be valid.
CVSS Score
4.6
EPSS Score
0.001
Published
2022-01-25
arm: guest_physmap_remove_page not removing the p2m mappings The functions to remove one or more entries from a guest p2m pagetable on Arm (p2m_remove_mapping, guest_physmap_remove_page, and p2m_set_entry with mfn set to INVALID_MFN) do not actually clear the pagetable entry if the entry doesn't have the valid bit set. It is possible to have a valid pagetable entry without the valid bit set when a guest operating system uses set/way cache maintenance instructions. For instance, a guest issuing a set/way cache maintenance instruction, then calling the XENMEM_decrease_reservation hypercall to give back memory pages to Xen, might be able to retain access to those pages even after Xen started reusing them for other purposes.
CVSS Score
7.8
EPSS Score
0.0
Published
2022-01-25
Another race in XENMAPSPACE_grant_table handling Guests are permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, are de-allocated when a guest switches (back) from v2 to v1. Freeing such pages requires that the hypervisor enforce that no parallel request can result in the addition of a mapping of such a page to a guest. That enforcement was missing, allowing guests to retain access to pages that were freed and perhaps re-used for other purposes. Unfortunately, when XSA-379 was being prepared, this similar issue was not noticed.
CVSS Score
7.8
EPSS Score
0.0
Published
2021-09-08
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVSS Score
6.8
EPSS Score
0.001
Published
2021-08-27
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVSS Score
6.8
EPSS Score
0.001
Published
2021-08-27
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVSS Score
6.8
EPSS Score
0.001
Published
2021-08-27
long running loops in grant table handling In order to properly monitor resource use, Xen maintains information on the grant mappings a domain may create to map grants offered by other domains. In the process of carrying out certain actions, Xen would iterate over all such entries, including ones which aren't in use anymore and some which may have been created but never used. If the number of entries for a given domain is large enough, this iterating of the entire table may tie up a CPU for too long, starving other domains or causing issues in the hypervisor itself. Note that a domain may map its own grants, i.e. there is no need for multiple domains to be involved here. A pair of "cooperating" guests may, however, cause the effects to be more severe.
CVSS Score
5.5
EPSS Score
0.0
Published
2021-08-27
inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status. That is, when operating in this mode, a guest has two tables. As a result, guests also need to be able to retrieve the addresses that the new status tracking table can be accessed through. For 32-bit guests on x86, translation of requests has to occur because the interface structure layouts commonly differ between 32- and 64-bit. The translation of the request to obtain the frame numbers of the grant status table involves translating the resulting array of frame numbers. Since the space used to carry out the translation is limited, the translation layer tells the core function the capacity of the array within translation space. Unfortunately the core function then only enforces array bounds to be below 8 times the specified value, and would write past the available space if enough frame numbers needed storing.
CVSS Score
5.5
EPSS Score
0.0
Published
2021-08-27


Contact Us

Shodan ® - All rights reserved