Security Vulnerabilities
- CVEs Published In 2024
In the Linux kernel, the following vulnerability has been resolved:
ASoC: imx-audmix: Add NULL check in imx_audmix_probe
devm_kasprintf() can return a NULL pointer on failure,but this
returned value in imx_audmix_probe() is not checked.
Add NULL check in imx_audmix_probe(), to handle kernel NULL
pointer dereference error.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in hwss_setup_dpp
This commit addresses a null pointer dereference issue in
hwss_setup_dpp(). The issue could occur when pipe_ctx->plane_state is
null. The fix adds a check to ensure `pipe_ctx->plane_state` is not null
before accessing. This prevents a null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in dcn20_program_pipe
This commit addresses a null pointer dereference issue in
dcn20_program_pipe(). Previously, commit 8e4ed3cf1642 ("drm/amd/display:
Add null check for pipe_ctx->plane_state in dcn20_program_pipe")
partially fixed the null pointer dereference issue. However, in
dcn20_update_dchubp_dpp(), the variable pipe_ctx is passed in, and
plane_state is accessed again through pipe_ctx. Multiple if statements
directly call attributes of plane_state, leading to potential null
pointer dereference issues. This patch adds necessary null checks to
ensure stability.
In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Fix possible resource leak in fw_log_firmware_info()
The alg instance should be released under the exception path, otherwise
there may be resource leak here.
To mitigate this, free the alg instance with crypto_free_shash when kmalloc
fails.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in SMB request handling
A race condition exists between SMB request handling in
`ksmbd_conn_handler_loop()` and the freeing of `ksmbd_conn` in the
workqueue handler `handle_ksmbd_work()`. This leads to a UAF.
- KASAN: slab-use-after-free Read in handle_ksmbd_work
- KASAN: slab-use-after-free in rtlock_slowlock_locked
This race condition arises as follows:
- `ksmbd_conn_handler_loop()` waits for `conn->r_count` to reach zero:
`wait_event(conn->r_count_q, atomic_read(&conn->r_count) == 0);`
- Meanwhile, `handle_ksmbd_work()` decrements `conn->r_count` using
`atomic_dec_return(&conn->r_count)`, and if it reaches zero, calls
`ksmbd_conn_free()`, which frees `conn`.
- However, after `handle_ksmbd_work()` decrements `conn->r_count`,
it may still access `conn->r_count_q` in the following line:
`waitqueue_active(&conn->r_count_q)` or `wake_up(&conn->r_count_q)`
This results in a UAF, as `conn` has already been freed.
The discovery of this UAF can be referenced in the following PR for
syzkaller's support for SMB requests.
In the Linux kernel, the following vulnerability has been resolved:
io_uring: check for overflows in io_pin_pages
WARNING: CPU: 0 PID: 5834 at io_uring/memmap.c:144 io_pin_pages+0x149/0x180 io_uring/memmap.c:144
CPU: 0 UID: 0 PID: 5834 Comm: syz-executor825 Not tainted 6.12.0-next-20241118-syzkaller #0
Call Trace:
<TASK>
__io_uaddr_map+0xfb/0x2d0 io_uring/memmap.c:183
io_rings_map io_uring/io_uring.c:2611 [inline]
io_allocate_scq_urings+0x1c0/0x650 io_uring/io_uring.c:3470
io_uring_create+0x5b5/0xc00 io_uring/io_uring.c:3692
io_uring_setup io_uring/io_uring.c:3781 [inline]
...
</TASK>
io_pin_pages()'s uaddr parameter came directly from the user and can be
garbage. Don't just add size to it as it can overflow.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix crash when unbinding
If there is an error during some initialization related to firmware,
the function ath12k_dp_cc_cleanup is called to release resources.
However this is released again when the device is unbinded (ath12k_pci),
and we get:
BUG: kernel NULL pointer dereference, address: 0000000000000020
at RIP: 0010:ath12k_dp_cc_cleanup.part.0+0xb6/0x500 [ath12k]
Call Trace:
ath12k_dp_cc_cleanup
ath12k_dp_free
ath12k_core_deinit
ath12k_pci_remove
...
The issue is always reproducible from a VM because the MSI addressing
initialization is failing.
In order to fix the issue, just set to NULL the released structure in
ath12k_dp_cc_cleanup at the end.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix warning when unbinding
If there is an error during some initialization related to firmware,
the buffers dp->tx_ring[i].tx_status are released.
However this is released again when the device is unbinded (ath12k_pci),
and we get:
WARNING: CPU: 0 PID: 2098 at mm/slub.c:4689 free_large_kmalloc+0x4d/0x80
Call Trace:
free_large_kmalloc
ath12k_dp_free
ath12k_core_deinit
ath12k_pci_remove
...
The issue is always reproducible from a VM because the MSI addressing
initialization is failing.
In order to fix the issue, just set the buffers to NULL after releasing in
order to avoid the double free.
In the Linux kernel, the following vulnerability has been resolved:
clk: clk-loongson2: Fix potential buffer overflow in flexible-array member access
Flexible-array member `hws` in `struct clk_hw_onecell_data` is annotated
with the `counted_by()` attribute. This means that when memory is
allocated for this array, the _counter_, which in this case is member
`num` in the flexible structure, should be set to the maximum number of
elements the flexible array can contain, or fewer.
In this case, the total number of elements for the flexible array is
determined by variable `clks_num` when allocating heap space via
`devm_kzalloc()`, as shown below:
289 struct loongson2_clk_provider *clp;
...
296 for (p = data; p->name; p++)
297 clks_num++;
298
299 clp = devm_kzalloc(dev, struct_size(clp, clk_data.hws, clks_num),
300 GFP_KERNEL);
So, `clp->clk_data.num` should be set to `clks_num` or less, and not
exceed `clks_num`, as is currently the case. Otherwise, if data is
written into `clp->clk_data.hws[clks_num]`, the instrumentation
provided by the compiler won't detect the overflow, leading to a
memory corruption bug at runtime.
Fix this issue by setting `clp->clk_data.num` to `clks_num`.
In the Linux kernel, the following vulnerability has been resolved:
smb: prevent use-after-free due to open_cached_dir error paths
If open_cached_dir() encounters an error parsing the lease from the
server, the error handling may race with receiving a lease break,
resulting in open_cached_dir() freeing the cfid while the queued work is
pending.
Update open_cached_dir() to drop refs rather than directly freeing the
cfid.
Have cached_dir_lease_break(), cfids_laundromat_worker(), and
invalidate_all_cached_dirs() clear has_lease immediately while still
holding cfids->cfid_list_lock, and then use this to also simplify the
reference counting in cfids_laundromat_worker() and
invalidate_all_cached_dirs().
Fixes this KASAN splat (which manually injects an error and lease break
in open_cached_dir()):
==================================================================
BUG: KASAN: slab-use-after-free in smb2_cached_lease_break+0x27/0xb0
Read of size 8 at addr ffff88811cc24c10 by task kworker/3:1/65
CPU: 3 UID: 0 PID: 65 Comm: kworker/3:1 Not tainted 6.12.0-rc6-g255cf264e6e5-dirty #87
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
Workqueue: cifsiod smb2_cached_lease_break
Call Trace:
<TASK>
dump_stack_lvl+0x77/0xb0
print_report+0xce/0x660
kasan_report+0xd3/0x110
smb2_cached_lease_break+0x27/0xb0
process_one_work+0x50a/0xc50
worker_thread+0x2ba/0x530
kthread+0x17c/0x1c0
ret_from_fork+0x34/0x60
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 2464:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
open_cached_dir+0xa7d/0x1fb0
smb2_query_path_info+0x43c/0x6e0
cifs_get_fattr+0x346/0xf10
cifs_get_inode_info+0x157/0x210
cifs_revalidate_dentry_attr+0x2d1/0x460
cifs_getattr+0x173/0x470
vfs_statx_path+0x10f/0x160
vfs_statx+0xe9/0x150
vfs_fstatat+0x5e/0xc0
__do_sys_newfstatat+0x91/0xf0
do_syscall_64+0x95/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 2464:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x51/0x70
kfree+0x174/0x520
open_cached_dir+0x97f/0x1fb0
smb2_query_path_info+0x43c/0x6e0
cifs_get_fattr+0x346/0xf10
cifs_get_inode_info+0x157/0x210
cifs_revalidate_dentry_attr+0x2d1/0x460
cifs_getattr+0x173/0x470
vfs_statx_path+0x10f/0x160
vfs_statx+0xe9/0x150
vfs_fstatat+0x5e/0xc0
__do_sys_newfstatat+0x91/0xf0
do_syscall_64+0x95/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Last potentially related work creation:
kasan_save_stack+0x33/0x60
__kasan_record_aux_stack+0xad/0xc0
insert_work+0x32/0x100
__queue_work+0x5c9/0x870
queue_work_on+0x82/0x90
open_cached_dir+0x1369/0x1fb0
smb2_query_path_info+0x43c/0x6e0
cifs_get_fattr+0x346/0xf10
cifs_get_inode_info+0x157/0x210
cifs_revalidate_dentry_attr+0x2d1/0x460
cifs_getattr+0x173/0x470
vfs_statx_path+0x10f/0x160
vfs_statx+0xe9/0x150
vfs_fstatat+0x5e/0xc0
__do_sys_newfstatat+0x91/0xf0
do_syscall_64+0x95/0x1a0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The buggy address belongs to the object at ffff88811cc24c00
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 16 bytes inside of
freed 1024-byte region [ffff88811cc24c00, ffff88811cc25000)