In the Linux kernel, the following vulnerability has been resolved:
media: platform: exynos4-is: Add hardware sync wait to fimc_is_hw_change_mode()
In fimc_is_hw_change_mode(), the function changes camera modes without
waiting for hardware completion, risking corrupted data or system hangs
if subsequent operations proceed before the hardware is ready.
Add fimc_is_hw_wait_intmsr0_intmsd0() after mode configuration, ensuring
hardware state synchronization and stable interrupt handling.
In the Linux kernel, the following vulnerability has been resolved:
sched/rt: Fix race in push_rt_task
Overview
========
When a CPU chooses to call push_rt_task and picks a task to push to
another CPU's runqueue then it will call find_lock_lowest_rq method
which would take a double lock on both CPUs' runqueues. If one of the
locks aren't readily available, it may lead to dropping the current
runqueue lock and reacquiring both the locks at once. During this window
it is possible that the task is already migrated and is running on some
other CPU. These cases are already handled. However, if the task is
migrated and has already been executed and another CPU is now trying to
wake it up (ttwu) such that it is queued again on the runqeue
(on_rq is 1) and also if the task was run by the same CPU, then the
current checks will pass even though the task was migrated out and is no
longer in the pushable tasks list.
Crashes
=======
This bug resulted in quite a few flavors of crashes triggering kernel
panics with various crash signatures such as assert failures, page
faults, null pointer dereferences, and queue corruption errors all
coming from scheduler itself.
Some of the crashes:
-> kernel BUG at kernel/sched/rt.c:1616! BUG_ON(idx >= MAX_RT_PRIO)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? pick_next_task_rt+0x6e/0x1d0
? do_error_trap+0x64/0xa0
? pick_next_task_rt+0x6e/0x1d0
? exc_invalid_op+0x4c/0x60
? pick_next_task_rt+0x6e/0x1d0
? asm_exc_invalid_op+0x12/0x20
? pick_next_task_rt+0x6e/0x1d0
__schedule+0x5cb/0x790
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: kernel NULL pointer dereference, address: 00000000000000c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? __warn+0x8a/0xe0
? exc_page_fault+0x3d6/0x520
? asm_exc_page_fault+0x1e/0x30
? pick_next_task_rt+0xb5/0x1d0
? pick_next_task_rt+0x8c/0x1d0
__schedule+0x583/0x7e0
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: unable to handle page fault for address: ffff9464daea5900
kernel BUG at kernel/sched/rt.c:1861! BUG_ON(rq->cpu != task_cpu(p))
-> kernel BUG at kernel/sched/rt.c:1055! BUG_ON(!rq->nr_running)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? dequeue_top_rt_rq+0xa2/0xb0
? do_error_trap+0x64/0xa0
? dequeue_top_rt_rq+0xa2/0xb0
? exc_invalid_op+0x4c/0x60
? dequeue_top_rt_rq+0xa2/0xb0
? asm_exc_invalid_op+0x12/0x20
? dequeue_top_rt_rq+0xa2/0xb0
dequeue_rt_entity+0x1f/0x70
dequeue_task_rt+0x2d/0x70
__schedule+0x1a8/0x7e0
? blk_finish_plug+0x25/0x40
schedule+0x3c/0xb0
futex_wait_queue_me+0xb6/0x120
futex_wait+0xd9/0x240
do_futex+0x344/0xa90
? get_mm_exe_file+0x30/0x60
? audit_exe_compare+0x58/0x70
? audit_filter_rules.constprop.26+0x65e/0x1220
__x64_sys_futex+0x148/0x1f0
do_syscall_64+0x30/0x80
entry_SYSCALL_64_after_hwframe+0x62/0xc7
-> BUG: unable to handle page fault for address: ffff8cf3608bc2c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? spurious_kernel_fault+0x171/0x1c0
? exc_page_fault+0x3b6/0x520
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? asm_exc_page_fault+0x1e/0x30
? _cond_resched+0x15/0x30
? futex_wait_queue_me+0xc8/0x120
? futex_wait+0xd9/0x240
? try_to_wake_up+0x1b8/0x490
? futex_wake+0x78/0x160
? do_futex+0xcd/0xa90
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? plist_del+0x6a/0xd0
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? dequeue_pushable_task+0x20/0x70
? __schedule+0x382/0x7e0
? asm_sysvec_reschedule_i
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
media: cxusb: no longer judge rbuf when the write fails
syzbot reported a uninit-value in cxusb_i2c_xfer. [1]
Only when the write operation of usb_bulk_msg() in dvb_usb_generic_rw()
succeeds and rlen is greater than 0, the read operation of usb_bulk_msg()
will be executed to read rlen bytes of data from the dvb device into the
rbuf.
In this case, although rlen is 1, the write operation failed which resulted
in the dvb read operation not being executed, and ultimately variable i was
not initialized.
[1]
BUG: KMSAN: uninit-value in cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
BUG: KMSAN: uninit-value in cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
__i2c_transfer+0xe25/0x3150 drivers/i2c/i2c-core-base.c:-1
i2c_transfer+0x317/0x4a0 drivers/i2c/i2c-core-base.c:2315
i2c_transfer_buffer_flags+0x125/0x1e0 drivers/i2c/i2c-core-base.c:2343
i2c_master_send include/linux/i2c.h:109 [inline]
i2cdev_write+0x210/0x280 drivers/i2c/i2c-dev.c:183
do_loop_readv_writev fs/read_write.c:848 [inline]
vfs_writev+0x963/0x14e0 fs/read_write.c:1057
do_writev+0x247/0x5c0 fs/read_write.c:1101
__do_sys_writev fs/read_write.c:1169 [inline]
__se_sys_writev fs/read_write.c:1166 [inline]
__x64_sys_writev+0x98/0xe0 fs/read_write.c:1166
x64_sys_call+0x2229/0x3c80 arch/x86/include/generated/asm/syscalls_64.h:21
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix race between nfsd registration and exports_proc
As of now nfsd calls create_proc_exports_entry() at start of init_nfsd
and cleanup by remove_proc_entry() at last of exit_nfsd.
Which causes kernel OOPs if there is race between below 2 operations:
(i) exportfs -r
(ii) mount -t nfsd none /proc/fs/nfsd
for 5.4 kernel ARM64:
CPU 1:
el1_irq+0xbc/0x180
arch_counter_get_cntvct+0x14/0x18
running_clock+0xc/0x18
preempt_count_add+0x88/0x110
prep_new_page+0xb0/0x220
get_page_from_freelist+0x2d8/0x1778
__alloc_pages_nodemask+0x15c/0xef0
__vmalloc_node_range+0x28c/0x478
__vmalloc_node_flags_caller+0x8c/0xb0
kvmalloc_node+0x88/0xe0
nfsd_init_net+0x6c/0x108 [nfsd]
ops_init+0x44/0x170
register_pernet_operations+0x114/0x270
register_pernet_subsys+0x34/0x50
init_nfsd+0xa8/0x718 [nfsd]
do_one_initcall+0x54/0x2e0
CPU 2 :
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
PC is at : exports_net_open+0x50/0x68 [nfsd]
Call trace:
exports_net_open+0x50/0x68 [nfsd]
exports_proc_open+0x2c/0x38 [nfsd]
proc_reg_open+0xb8/0x198
do_dentry_open+0x1c4/0x418
vfs_open+0x38/0x48
path_openat+0x28c/0xf18
do_filp_open+0x70/0xe8
do_sys_open+0x154/0x248
Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu().
and same is happening on latest 6.14 kernel as well:
[ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty
...
[ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48
...
[ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4
...
[ 285.469695] Call trace:
[ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P)
[ 285.470488] seq_read+0xe0/0x11c
[ 285.470675] proc_reg_read+0x9c/0xf0
[ 285.470874] vfs_read+0xc4/0x2fc
[ 285.471057] ksys_read+0x6c/0xf4
[ 285.471231] __arm64_sys_read+0x1c/0x28
[ 285.471428] invoke_syscall+0x44/0x100
[ 285.471633] el0_svc_common.constprop.0+0x40/0xe0
[ 285.471870] do_el0_svc_compat+0x1c/0x34
[ 285.472073] el0_svc_compat+0x2c/0x80
[ 285.472265] el0t_32_sync_handler+0x90/0x140
[ 285.472473] el0t_32_sync+0x19c/0x1a0
[ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3)
[ 285.473422] ---[ end trace 0000000000000000 ]---
It reproduced simply with below script:
while [ 1 ]
do
/exportfs -r
done &
while [ 1 ]
do
insmod /nfsd.ko
mount -t nfsd none /proc/fs/nfsd
umount /proc/fs/nfsd
rmmod nfsd
done &
So exporting interfaces to user space shall be done at last and
cleanup at first place.
With change there is no Kernel OOPs.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on sit_bitmap_size
w/ below testcase, resize will generate a corrupted image which
contains inconsistent metadata, so when mounting such image, it
will trigger kernel panic:
touch img
truncate -s $((512*1024*1024*1024)) img
mkfs.f2fs -f img $((256*1024*1024))
resize.f2fs -s -i img -t $((1024*1024*1024))
mount img /mnt/f2fs
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.h:863!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 11 UID: 0 PID: 3922 Comm: mount Not tainted 6.15.0-rc1+ #191 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_ra_meta_pages+0x47c/0x490
Call Trace:
f2fs_build_segment_manager+0x11c3/0x2600
f2fs_fill_super+0xe97/0x2840
mount_bdev+0xf4/0x140
legacy_get_tree+0x2b/0x50
vfs_get_tree+0x29/0xd0
path_mount+0x487/0xaf0
__x64_sys_mount+0x116/0x150
do_syscall_64+0x82/0x190
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdbfde1bcfe
The reaseon is:
sit_i->bitmap_size is 192, so size of sit bitmap is 192*8=1536, at maximum
there are 1536 sit blocks, however MAIN_SEGS is 261893, so that sit_blk_cnt
is 4762, build_sit_entries() -> current_sit_addr() tries to access
out-of-boundary in sit_bitmap at offset from [1536, 4762), once sit_bitmap
and sit_bitmap_mirror is not the same, it will trigger f2fs_bug_on().
Let's add sanity check in f2fs_sanity_check_ckpt() to avoid panic.
In the Linux kernel, the following vulnerability has been resolved:
ipc: fix to protect IPCS lookups using RCU
syzbot reported that it discovered a use-after-free vulnerability, [0]
[0]: https://lore.kernel.org/all/67af13f8.050a0220.21dd3.0038.GAE@google.com/
idr_for_each() is protected by rwsem, but this is not enough. If it is
not protected by RCU read-critical region, when idr_for_each() calls
radix_tree_node_free() through call_rcu() to free the radix_tree_node
structure, the node will be freed immediately, and when reading the next
node in radix_tree_for_each_slot(), the already freed memory may be read.
Therefore, we need to add code to make sure that idr_for_each() is
protected within the RCU read-critical region when we call it in
shm_destroy_orphaned().