In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Fix OOB read on empty string write
When writing an empty string to either 'qw_sign' or 'landingPage'
sysfs attributes, the store functions attempt to access page[l - 1]
before validating that the length 'l' is greater than zero.
This patch fixes the vulnerability by adding a check at the beginning
of os_desc_qw_sign_store() and webusb_landingPage_store() to handle
the zero-length input case gracefully by returning immediately.
In the Linux kernel, the following vulnerability has been resolved:
comedi: das6402: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* IRQs 2,3,5,6,7, 10,11,15 are valid for "enhanced" mode */
if ((1 << it->options[1]) & 0x8cec) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts.
In the Linux kernel, the following vulnerability has been resolved:
comedi: das16m1: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* only irqs 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, and 15 are valid */
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix null-ptr-deref in l2cap_sock_resume_cb()
syzbot reported null-ptr-deref in l2cap_sock_resume_cb(). [0]
l2cap_sock_resume_cb() has a similar problem that was fixed by commit
1bff51ea59a9 ("Bluetooth: fix use-after-free error in lock_sock_nested()").
Since both l2cap_sock_kill() and l2cap_sock_resume_cb() are executed
under l2cap_sock_resume_cb(), we can avoid the issue simply by checking
if chan->data is NULL.
Let's not access to the killed socket in l2cap_sock_resume_cb().
[0]:
BUG: KASAN: null-ptr-deref in instrument_atomic_write include/linux/instrumented.h:82 [inline]
BUG: KASAN: null-ptr-deref in clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline]
BUG: KASAN: null-ptr-deref in l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711
Write of size 8 at addr 0000000000000570 by task kworker/u9:0/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u9:0 Not tainted 6.16.0-rc4-syzkaller-g7482bb149b9f #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Workqueue: hci0 hci_rx_work
Call trace:
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:501 (C)
__dump_stack+0x30/0x40 lib/dump_stack.c:94
dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120
print_report+0x58/0x84 mm/kasan/report.c:524
kasan_report+0xb0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:-1 [inline]
kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189
__kasan_check_write+0x20/0x30 mm/kasan/shadow.c:37
instrument_atomic_write include/linux/instrumented.h:82 [inline]
clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline]
l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711
l2cap_security_cfm+0x524/0xea0 net/bluetooth/l2cap_core.c:7357
hci_auth_cfm include/net/bluetooth/hci_core.h:2092 [inline]
hci_auth_complete_evt+0x2e8/0xa4c net/bluetooth/hci_event.c:3514
hci_event_func net/bluetooth/hci_event.c:7511 [inline]
hci_event_packet+0x650/0xe9c net/bluetooth/hci_event.c:7565
hci_rx_work+0x320/0xb18 net/bluetooth/hci_core.c:4070
process_one_work+0x7e8/0x155c kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3321 [inline]
worker_thread+0x958/0xed8 kernel/workqueue.c:3402
kthread+0x5fc/0x75c kernel/kthread.c:464
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:847
In the Linux kernel, the following vulnerability has been resolved:
usb: net: sierra: check for no status endpoint
The driver checks for having three endpoints and
having bulk in and out endpoints, but not that
the third endpoint is interrupt input.
Rectify the omission.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix race condition on qfq_aggregate
A race condition can occur when 'agg' is modified in qfq_change_agg
(called during qfq_enqueue) while other threads access it
concurrently. For example, qfq_dump_class may trigger a NULL
dereference, and qfq_delete_class may cause a use-after-free.
This patch addresses the issue by:
1. Moved qfq_destroy_class into the critical section.
2. Added sch_tree_lock protection to qfq_dump_class and
qfq_dump_class_stats.
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix initialization of data for instructions that write to subdevice
Some Comedi subdevice instruction handlers are known to access
instruction data elements beyond the first `insn->n` elements in some
cases. The `do_insn_ioctl()` and `do_insnlist_ioctl()` functions
allocate at least `MIN_SAMPLES` (16) data elements to deal with this,
but they do not initialize all of that. For Comedi instruction codes
that write to the subdevice, the first `insn->n` data elements are
copied from user-space, but the remaining elements are left
uninitialized. That could be a problem if the subdevice instruction
handler reads the uninitialized data. Ensure that the first
`MIN_SAMPLES` elements are initialized before calling these instruction
handlers, filling the uncopied elements with 0. For
`do_insnlist_ioctl()`, the same data buffer elements are used for
handling a list of instructions, so ensure the first `MIN_SAMPLES`
elements are initialized for each instruction that writes to the
subdevice.
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case.
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fail COMEDI_INSNLIST ioctl if n_insns is too large
The handling of the `COMEDI_INSNLIST` ioctl allocates a kernel buffer to
hold the array of `struct comedi_insn`, getting the length from the
`n_insns` member of the `struct comedi_insnlist` supplied by the user.
The allocation will fail with a WARNING and a stack dump if it is too
large.
Avoid that by failing with an `-EINVAL` error if the supplied `n_insns`
value is unreasonable.
Define the limit on the `n_insns` value in the `MAX_INSNS` macro. Set
this to the same value as `MAX_SAMPLES` (65536), which is the maximum
allowed sum of the values of the member `n` in the array of `struct
comedi_insn`, and sensible comedi instructions will have an `n` of at
least 1.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Return NULL when htb_lookup_leaf encounters an empty rbtree
htb_lookup_leaf has a BUG_ON that can trigger with the following:
tc qdisc del dev lo root
tc qdisc add dev lo root handle 1: htb default 1
tc class add dev lo parent 1: classid 1:1 htb rate 64bit
tc qdisc add dev lo parent 1:1 handle 2: netem
tc qdisc add dev lo parent 2:1 handle 3: blackhole
ping -I lo -c1 -W0.001 127.0.0.1
The root cause is the following:
1. htb_dequeue calls htb_dequeue_tree which calls the dequeue handler on
the selected leaf qdisc
2. netem_dequeue calls enqueue on the child qdisc
3. blackhole_enqueue drops the packet and returns a value that is not
just NET_XMIT_SUCCESS
4. Because of this, netem_dequeue calls qdisc_tree_reduce_backlog, and
since qlen is now 0, it calls htb_qlen_notify -> htb_deactivate ->
htb_deactiviate_prios -> htb_remove_class_from_row -> htb_safe_rb_erase
5. As this is the only class in the selected hprio rbtree,
__rb_change_child in __rb_erase_augmented sets the rb_root pointer to
NULL
6. Because blackhole_dequeue returns NULL, netem_dequeue returns NULL,
which causes htb_dequeue_tree to call htb_lookup_leaf with the same
hprio rbtree, and fail the BUG_ON
The function graph for this scenario is shown here:
0) | htb_enqueue() {
0) + 13.635 us | netem_enqueue();
0) 4.719 us | htb_activate_prios();
0) # 2249.199 us | }
0) | htb_dequeue() {
0) 2.355 us | htb_lookup_leaf();
0) | netem_dequeue() {
0) + 11.061 us | blackhole_enqueue();
0) | qdisc_tree_reduce_backlog() {
0) | qdisc_lookup_rcu() {
0) 1.873 us | qdisc_match_from_root();
0) 6.292 us | }
0) 1.894 us | htb_search();
0) | htb_qlen_notify() {
0) 2.655 us | htb_deactivate_prios();
0) 6.933 us | }
0) + 25.227 us | }
0) 1.983 us | blackhole_dequeue();
0) + 86.553 us | }
0) # 2932.761 us | qdisc_warn_nonwc();
0) | htb_lookup_leaf() {
0) | BUG_ON();
------------------------------------------
The full original bug report can be seen here [1].
We can fix this just by returning NULL instead of the BUG_ON,
as htb_dequeue_tree returns NULL when htb_lookup_leaf returns
NULL.
[1] https://lore.kernel.org/netdev/pF5XOOIim0IuEfhI-SOxTgRvNoDwuux7UHKnE_Y5-zVd4wmGvNk2ceHjKb8ORnzw0cGwfmVu42g9dL7XyJLf1NEzaztboTWcm0Ogxuojoeo=@willsroot.io/