In the Linux kernel, the following vulnerability has been resolved:
bpf: support non-r10 register spill/fill to/from stack in precision tracking
Use instruction (jump) history to record instructions that performed
register spill/fill to/from stack, regardless if this was done through
read-only r10 register, or any other register after copying r10 into it
*and* potentially adjusting offset.
To make this work reliably, we push extra per-instruction flags into
instruction history, encoding stack slot index (spi) and stack frame
number in extra 10 bit flags we take away from prev_idx in instruction
history. We don't touch idx field for maximum performance, as it's
checked most frequently during backtracking.
This change removes basically the last remaining practical limitation of
precision backtracking logic in BPF verifier. It fixes known
deficiencies, but also opens up new opportunities to reduce number of
verified states, explored in the subsequent patches.
There are only three differences in selftests' BPF object files
according to veristat, all in the positive direction (less states).
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
-------------------------------------- ------------- --------- --------- ------------- ---------- ---------- -------------
test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%)
Note, I avoided renaming jmp_history to more generic insn_hist to
minimize number of lines changed and potential merge conflicts between
bpf and bpf-next trees.
Notice also cur_hist_entry pointer reset to NULL at the beginning of
instruction verification loop. This pointer avoids the problem of
relying on last jump history entry's insn_idx to determine whether we
already have entry for current instruction or not. It can happen that we
added jump history entry because current instruction is_jmp_point(), but
also we need to add instruction flags for stack access. In this case, we
don't want to entries, so we need to reuse last added entry, if it is
present.
Relying on insn_idx comparison has the same ambiguity problem as the one
that was fixed recently in [0], so we avoid that.
[0] https://patchwork.kernel.org/project/netdevbpf/patch/20231110002638.4168352-3-andrii@kernel.org/
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix user-after-free from session log off
There is racy issue between smb2 session log off and smb2 session setup.
It will cause user-after-free from session log off.
This add session_lock when setting SMB2_SESSION_EXPIRED and referece
count to session struct not to free session while it is being used.
In the Linux kernel, the following vulnerability has been resolved:
media: pci: cx23885: check cx23885_vdev_init() return
cx23885_vdev_init() can return a NULL pointer, but that pointer
is used in the next line without a check.
Add a NULL pointer check and go to the error unwind if it is NULL.
In the Linux kernel, the following vulnerability has been resolved:
ntb: ntb_hw_switchtec: Fix use after free vulnerability in switchtec_ntb_remove due to race condition
In the switchtec_ntb_add function, it can call switchtec_ntb_init_sndev
function, then &sndev->check_link_status_work is bound with
check_link_status_work. switchtec_ntb_link_notification may be called
to start the work.
If we remove the module which will call switchtec_ntb_remove to make
cleanup, it will free sndev through kfree(sndev), while the work
mentioned above will be used. The sequence of operations that may lead
to a UAF bug is as follows:
CPU0 CPU1
| check_link_status_work
switchtec_ntb_remove |
kfree(sndev); |
| if (sndev->link_force_down)
| // use sndev
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in switchtec_ntb_remove.
In the Linux kernel, the following vulnerability has been resolved:
i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition
In the cdns_i3c_master_probe function, &master->hj_work is bound with
cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call
cnds_i3c_master_demux_ibis function to start the work.
If we remove the module which will call cdns_i3c_master_remove to
make cleanup, it will free master->base through i3c_master_unregister
while the work mentioned above will be used. The sequence of operations
that may lead to a UAF bug is as follows:
CPU0 CPU1
| cdns_i3c_master_hj
cdns_i3c_master_remove |
i3c_master_unregister(&master->base) |
device_unregister(&master->dev) |
device_release |
//free master->base |
| i3c_master_do_daa(&master->base)
| //use master->base
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in cdns_i3c_master_remove.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rtrs-srv: Avoid null pointer deref during path establishment
For RTRS path establishment, RTRS client initiates and completes con_num
of connections. After establishing all its connections, the information
is exchanged between the client and server through the info_req message.
During this exchange, it is essential that all connections have been
established, and the state of the RTRS srv path is CONNECTED.
So add these sanity checks, to make sure we detect and abort process in
error scenarios to avoid null pointer deref.
In the Linux kernel, the following vulnerability has been resolved:
fbcon: Fix a NULL pointer dereference issue in fbcon_putcs
syzbot has found a NULL pointer dereference bug in fbcon.
Here is the simplified C reproducer:
struct param {
uint8_t type;
struct tiocl_selection ts;
};
int main()
{
struct fb_con2fbmap con2fb;
struct param param;
int fd = open("/dev/fb1", 0, 0);
con2fb.console = 0x19;
con2fb.framebuffer = 0;
ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb);
param.type = 2;
param.ts.xs = 0; param.ts.ys = 0;
param.ts.xe = 0; param.ts.ye = 0;
param.ts.sel_mode = 0;
int fd1 = open("/dev/tty1", O_RDWR, 0);
ioctl(fd1, TIOCLINUX, ¶m);
con2fb.console = 1;
con2fb.framebuffer = 0;
ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb);
return 0;
}
After calling ioctl(fd1, TIOCLINUX, ¶m), the subsequent ioctl(fd, FBIOPUT_CON2FBMAP, &con2fb)
causes the kernel to follow a different execution path:
set_con2fb_map
-> con2fb_init_display
-> fbcon_set_disp
-> redraw_screen
-> hide_cursor
-> clear_selection
-> highlight
-> invert_screen
-> do_update_region
-> fbcon_putcs
-> ops->putcs
Since ops->putcs is a NULL pointer, this leads to a kernel panic.
To prevent this, we need to call set_blitting_type() within set_con2fb_map()
to properly initialize ops->putcs.