In the Linux kernel, the following vulnerability has been resolved:
crypto: scomp - fix req->dst buffer overflow
The req->dst buffer size should be checked before copying from the
scomp_scratch->dst to avoid req->dst buffer overflow problem.
In the Linux kernel, the following vulnerability has been resolved:
crypto: lib/mpi - Fix unexpected pointer access in mpi_ec_init
When the mpi_ec_ctx structure is initialized, some fields are not
cleared, causing a crash when referencing the field when the
structure was released. Initially, this issue was ignored because
memory for mpi_ec_ctx is allocated with the __GFP_ZERO flag.
For example, this error will be triggered when calculating the
Za value for SM2 separately.
In the Linux kernel, the following vulnerability has been resolved:
binder: fix race between mmput() and do_exit()
Task A calls binder_update_page_range() to allocate and insert pages on
a remote address space from Task B. For this, Task A pins the remote mm
via mmget_not_zero() first. This can race with Task B do_exit() and the
final mmput() refcount decrement will come from Task A.
Task A | Task B
------------------+------------------
mmget_not_zero() |
| do_exit()
| exit_mm()
| mmput()
mmput() |
exit_mmap() |
remove_vma() |
fput() |
In this case, the work of ____fput() from Task B is queued up in Task A
as TWA_RESUME. So in theory, Task A returns to userspace and the cleanup
work gets executed. However, Task A instead sleep, waiting for a reply
from Task B that never comes (it's dead).
This means the binder_deferred_release() is blocked until an unrelated
binder event forces Task A to go back to userspace. All the associated
death notifications will also be delayed until then.
In order to fix this use mmput_async() that will schedule the work in
the corresponding mm->async_put_work WQ instead of Task A.
A stack-based buffer overflow vulnerability in gross 0.9.3 through 1.x before 1.0.4 allows remote attackers to trigger a denial of service (grossd daemon crash) or potentially execute arbitrary code in grossd via crafted SMTP transaction parameters that cause an incorrect strncat for a log entry.
Denial of Service via incomplete cleanup vulnerability in Apache Tomcat. It was possible for WebSocket clients to keep WebSocket connections open leading to increased resource consumption.This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M16, from 10.1.0-M1 through 10.1.18, from 9.0.0-M1 through 9.0.85, from 8.5.0 through 8.5.98.
Older, EOL versions may also be affected.
Users are recommended to upgrade to version 11.0.0-M17, 10.1.19, 9.0.86 or 8.5.99 which fix the issue.
Denial of Service due to improper input validation vulnerability for HTTP/2 requests in Apache Tomcat. When processing an HTTP/2 request, if the request exceeded any of the configured limits for headers, the associated HTTP/2 stream was not reset until after all of the headers had been processed.This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M16, from 10.1.0-M1 through 10.1.18, from 9.0.0-M1 through 9.0.85, from 8.5.0 through 8.5.98.
Users are recommended to upgrade to version 11.0.0-M17, 10.1.19, 9.0.86 or 8.5.99 which fix the issue.
In the Linux kernel, the following vulnerability has been resolved:
mm/sparsemem: fix race in accessing memory_section->usage
The below race is observed on a PFN which falls into the device memory
region with the system memory configuration where PFN's are such that
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL]. Since normal zone start and end
pfn contains the device memory PFN's as well, the compaction triggered
will try on the device memory PFN's too though they end up in NOP(because
pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections). When
from other core, the section mappings are being removed for the
ZONE_DEVICE region, that the PFN in question belongs to, on which
compaction is currently being operated is resulting into the kernel crash
with CONFIG_SPASEMEM_VMEMAP enabled. The crash logs can be seen at [1].
compact_zone() memunmap_pages
------------- ---------------
__pageblock_pfn_to_page
......
(a)pfn_valid():
valid_section()//return true
(b)__remove_pages()->
sparse_remove_section()->
section_deactivate():
[Free the array ms->usage and set
ms->usage = NULL]
pfn_section_valid()
[Access ms->usage which
is NULL]
NOTE: From the above it can be said that the race is reduced to between
the pfn_valid()/pfn_section_valid() and the section deactivate with
SPASEMEM_VMEMAP enabled.
The commit b943f045a9af("mm/sparse: fix kernel crash with
pfn_section_valid check") tried to address the same problem by clearing
the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns
false thus ms->usage is not accessed.
Fix this issue by the below steps:
a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage.
b) RCU protected read side critical section will either return NULL
when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage.
c) Free the ->usage with kfree_rcu() and set ms->usage = NULL. No
attempt will be made to access ->usage after this as the
SECTION_HAS_MEM_MAP is cleared thus valid_section() return false.
Thanks to David/Pavan for their inputs on this patch.
[1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/
On Snapdragon SoC, with the mentioned memory configuration of PFN's as
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of
issues daily while testing on a device farm.
For this particular issue below is the log. Though the below log is
not directly pointing to the pfn_section_valid(){ ms->usage;}, when we
loaded this dump on T32 lauterbach tool, it is pointing.
[ 540.578056] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000000
[ 540.578068] Mem abort info:
[ 540.578070] ESR = 0x0000000096000005
[ 540.578073] EC = 0x25: DABT (current EL), IL = 32 bits
[ 540.578077] SET = 0, FnV = 0
[ 540.578080] EA = 0, S1PTW = 0
[ 540.578082] FSC = 0x05: level 1 translation fault
[ 540.578085] Data abort info:
[ 540.578086] ISV = 0, ISS = 0x00000005
[ 540.578088] CM = 0, WnR = 0
[ 540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--)
[ 540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c
[ 540.579454] lr : compact_zone+0x994/0x1058
[ 540.579460] sp : ffffffc03579b510
[ 540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c
[ 540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640
[ 540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000
[ 540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140
[ 540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff
[ 540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001
[ 540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440
[ 540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4
[ 540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fix NULL pointer in channel unregistration function
__dma_async_device_channel_register() can fail. In case of failure,
chan->local is freed (with free_percpu()), and chan->local is nullified.
When dma_async_device_unregister() is called (because of managed API or
intentionally by DMA controller driver), channels are unconditionally
unregistered, leading to this NULL pointer:
[ 1.318693] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0
[...]
[ 1.484499] Call trace:
[ 1.486930] device_del+0x40/0x394
[ 1.490314] device_unregister+0x20/0x7c
[ 1.494220] __dma_async_device_channel_unregister+0x68/0xc0
Look at dma_async_device_register() function error path, channel device
unregistration is done only if chan->local is not NULL.
Then add the same condition at the beginning of
__dma_async_device_channel_unregister() function, to avoid NULL pointer
issue whatever the API used to reach this function.