Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Hotspot). Supported versions that are affected are Java SE: 8u152 and 9.0.1; Java SE Embedded: 8u151. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 6.5 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N).
Vulnerability in the Java SE, Java SE Embedded, JRockit component of Oracle Java SE (subcomponent: LDAP). Supported versions that are affected are Java SE: 6u171, 7u161, 8u152 and 9.0.1; Java SE Embedded: 8u151; JRockit: R28.3.16. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, JRockit. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE, Java SE Embedded, JRockit accessible data. Note: This vulnerability applies to client and server deployment of Java. This vulnerability can be exploited through sandboxed Java Web Start applications and sandboxed Java applets. It can also be exploited by supplying data to APIs in the specified Component without using sandboxed Java Web Start applications or sandboxed Java applets, such as through a web service. CVSS 3.0 Base Score 4.3 (Confidentiality impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N).
A stack-based buffer overflow within GNOME gcab through 0.7.4 can be exploited by malicious attackers to cause a crash or, potentially, execute arbitrary code via a crafted .cab file.
Ruby before 2.4.3 allows Net::FTP command injection. Net::FTP#get, getbinaryfile, gettextfile, put, putbinaryfile, and puttextfile use Kernel#open to open a local file. If the localfile argument starts with the "|" pipe character, the command following the pipe character is executed. The default value of localfile is File.basename(remotefile), so malicious FTP servers could cause arbitrary command execution.
By exploiting the way Apache OpenOffice before 4.1.4 renders embedded objects, an attacker could craft a document that allows reading in a file from the user's filesystem. Information could be retrieved by the attacker by, e.g., using hidden sections to store the information, tricking the user into saving the document and convincing the user to send the document back to the attacker. The vulnerability is mitigated by the need for the attacker to know the precise file path in the target system, and the need to trick the user into saving the document and sending it back.
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.
sosreport in SoS 3.x allows local users to obtain sensitive information from sosreport files or gain privileges via a symlink attack on an archive file in a temporary directory, as demonstrated by sosreport-$hostname-$date.tar in /tmp/sosreport-$hostname-$date.
The net/http library in net/textproto/reader.go in Go before 1.4.3 does not properly parse HTTP header keys, which allows remote attackers to conduct HTTP request smuggling attacks via a space instead of a hyphen, as demonstrated by "Content Length" instead of "Content-Length."
The net/http library in net/http/transfer.go in Go before 1.4.3 does not properly parse HTTP headers, which allows remote attackers to conduct HTTP request smuggling attacks via a request with two Content-length headers.
RubyGems versions between 2.0.0 and 2.6.13 are vulnerable to a possible remote code execution vulnerability. YAML deserialization of gem specifications can bypass class white lists. Specially crafted serialized objects can possibly be used to escalate to remote code execution.