Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 6.6.62  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: usb: renesas_usbhs: Reorder clock handling and power management in probe Reorder the initialization sequence in `usbhs_probe()` to enable runtime PM before accessing registers, preventing potential crashes due to uninitialized clocks. Currently, in the probe path, registers are accessed before enabling the clocks, leading to a synchronous external abort on the RZ/V2H SoC. The problematic call flow is as follows: usbhs_probe() usbhs_sys_clock_ctrl() usbhs_bset() usbhs_write() iowrite16() <-- Register access before enabling clocks Since `iowrite16()` is performed without ensuring the required clocks are enabled, this can lead to access errors. To fix this, enable PM runtime early in the probe function and ensure clocks are acquired before register access, preventing crashes like the following on RZ/V2H: [13.272640] Internal error: synchronous external abort: 0000000096000010 [#1] PREEMPT SMP [13.280814] Modules linked in: cec renesas_usbhs(+) drm_kms_helper fuse drm backlight ipv6 [13.289088] CPU: 1 UID: 0 PID: 195 Comm: (udev-worker) Not tainted 6.14.0-rc7+ #98 [13.296640] Hardware name: Renesas RZ/V2H EVK Board based on r9a09g057h44 (DT) [13.303834] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [13.310770] pc : usbhs_bset+0x14/0x4c [renesas_usbhs] [13.315831] lr : usbhs_probe+0x2e4/0x5ac [renesas_usbhs] [13.321138] sp : ffff8000827e3850 [13.324438] x29: ffff8000827e3860 x28: 0000000000000000 x27: ffff8000827e3ca0 [13.331554] x26: ffff8000827e3ba0 x25: ffff800081729668 x24: 0000000000000025 [13.338670] x23: ffff0000c0f08000 x22: 0000000000000000 x21: ffff0000c0f08010 [13.345783] x20: 0000000000000000 x19: ffff0000c3b52080 x18: 00000000ffffffff [13.352895] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000827e36ce [13.360009] x14: 00000000000003d7 x13: 00000000000003d7 x12: 0000000000000000 [13.367122] x11: 0000000000000000 x10: 0000000000000aa0 x9 : ffff8000827e3750 [13.374235] x8 : ffff0000c1850b00 x7 : 0000000003826060 x6 : 000000000000001c [13.381347] x5 : 000000030d5fcc00 x4 : ffff8000825c0000 x3 : 0000000000000000 [13.388459] x2 : 0000000000000400 x1 : 0000000000000000 x0 : ffff0000c3b52080 [13.395574] Call trace: [13.398013] usbhs_bset+0x14/0x4c [renesas_usbhs] (P) [13.403076] platform_probe+0x68/0xdc [13.406738] really_probe+0xbc/0x2c0 [13.410306] __driver_probe_device+0x78/0x120 [13.414653] driver_probe_device+0x3c/0x154 [13.418825] __driver_attach+0x90/0x1a0 [13.422647] bus_for_each_dev+0x7c/0xe0 [13.426470] driver_attach+0x24/0x30 [13.430032] bus_add_driver+0xe4/0x208 [13.433766] driver_register+0x68/0x130 [13.437587] __platform_driver_register+0x24/0x30 [13.442273] renesas_usbhs_driver_init+0x20/0x1000 [renesas_usbhs] [13.448450] do_one_initcall+0x60/0x1d4 [13.452276] do_init_module+0x54/0x1f8 [13.456014] load_module+0x1754/0x1c98 [13.459750] init_module_from_file+0x88/0xcc [13.464004] __arm64_sys_finit_module+0x1c4/0x328 [13.468689] invoke_syscall+0x48/0x104 [13.472426] el0_svc_common.constprop.0+0xc0/0xe0 [13.477113] do_el0_svc+0x1c/0x28 [13.480415] el0_svc+0x30/0xcc [13.483460] el0t_64_sync_handler+0x10c/0x138 [13.487800] el0t_64_sync+0x198/0x19c [13.491453] Code: 2a0103e1 12003c42 12003c63 8b010084 (79400084) [13.497522] ---[ end trace 0000000000000000 ]---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: Add NULL check in udma_probe() devm_kasprintf() returns NULL when memory allocation fails. Currently, udma_probe() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: dm: limit swapping tables for devices with zone write plugs dm_revalidate_zones() only allowed new or previously unzoned devices to call blk_revalidate_disk_zones(). If the device was already zoned, disk->nr_zones would always equal md->nr_zones, so dm_revalidate_zones() returned without doing any work. This would make the zoned settings for the device not match the new table. If the device had zone write plug resources, it could run into errors like bdev_zone_is_seq() reading invalid memory because disk->conv_zones_bitmap was the wrong size. If the device doesn't have any zone write plug resources, calling blk_revalidate_disk_zones() will always correctly update device. If blk_revalidate_disk_zones() fails, it can still overwrite or clear the current disk->nr_zones value. In this case, DM must restore the previous value of disk->nr_zones, so that the zoned settings will continue to match the previous value that it fell back to. If the device already has zone write plug resources, blk_revalidate_disk_zones() will not correctly update them, if it is called for arbitrary zoned device changes. Since there is not much need for this ability, the easiest solution is to disallow any table reloads that change the zoned settings, for devices that already have zone plug resources. Specifically, if a device already has zone plug resources allocated, it can only switch to another zoned table that also emulates zone append. Also, it cannot change the device size or the zone size. A device can switch to an error target.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: hwmon: (asus-ec-sensors) check sensor index in read_string() Prevent a potential invalid memory access when the requested sensor is not found. find_ec_sensor_index() may return a negative value (e.g. -ENOENT), but its result was used without checking, which could lead to undefined behavior when passed to get_sensor_info(). Add a proper check to return -EINVAL if sensor_index is negative. Found by Linux Verification Center (linuxtesting.org) with SVACE. [groeck: Return error code returned from find_ec_sensor_index]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: page_pool: Fix use-after-free in page_pool_recycle_in_ring syzbot reported a uaf in page_pool_recycle_in_ring: BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862 Read of size 8 at addr ffff8880286045a0 by task syz.0.284/6943 CPU: 0 UID: 0 PID: 6943 Comm: syz.0.284 Not tainted 6.13.0-rc3-syzkaller-gdfa94ce54f41 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862 __raw_spin_unlock_bh include/linux/spinlock_api_smp.h:165 [inline] _raw_spin_unlock_bh+0x1b/0x40 kernel/locking/spinlock.c:210 spin_unlock_bh include/linux/spinlock.h:396 [inline] ptr_ring_produce_bh include/linux/ptr_ring.h:164 [inline] page_pool_recycle_in_ring net/core/page_pool.c:707 [inline] page_pool_put_unrefed_netmem+0x748/0xb00 net/core/page_pool.c:826 page_pool_put_netmem include/net/page_pool/helpers.h:323 [inline] page_pool_put_full_netmem include/net/page_pool/helpers.h:353 [inline] napi_pp_put_page+0x149/0x2b0 net/core/skbuff.c:1036 skb_pp_recycle net/core/skbuff.c:1047 [inline] skb_free_head net/core/skbuff.c:1094 [inline] skb_release_data+0x6c4/0x8a0 net/core/skbuff.c:1125 skb_release_all net/core/skbuff.c:1190 [inline] __kfree_skb net/core/skbuff.c:1204 [inline] sk_skb_reason_drop+0x1c9/0x380 net/core/skbuff.c:1242 kfree_skb_reason include/linux/skbuff.h:1263 [inline] __skb_queue_purge_reason include/linux/skbuff.h:3343 [inline] root cause is: page_pool_recycle_in_ring ptr_ring_produce spin_lock(&r->producer_lock); WRITE_ONCE(r->queue[r->producer++], ptr) //recycle last page to pool page_pool_release page_pool_scrub page_pool_empty_ring ptr_ring_consume page_pool_return_page //release all page __page_pool_destroy free_percpu(pool->recycle_stats); free(pool) //free spin_unlock(&r->producer_lock); //pool->ring uaf read recycle_stat_inc(pool, ring); page_pool can be free while page pool recycle the last page in ring. Add producer-lock barrier to page_pool_release to prevent the page pool from being free before all pages have been recycled. recycle_stat_inc() is empty when CONFIG_PAGE_POOL_STATS is not enabled, which will trigger Wempty-body build warning. Add definition for pool stat macro to fix warning.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: coresight: prevent deactivate active config while enabling the config While enable active config via cscfg_csdev_enable_active_config(), active config could be deactivated via configfs' sysfs interface. This could make UAF issue in below scenario: CPU0 CPU1 (sysfs enable) load module cscfg_load_config_sets() activate config. // sysfs (sys_active_cnt == 1) ... cscfg_csdev_enable_active_config() lock(csdev->cscfg_csdev_lock) // here load config activate by CPU1 unlock(csdev->cscfg_csdev_lock) deactivate config // sysfs (sys_activec_cnt == 0) cscfg_unload_config_sets() unload module // access to config_desc which freed // while unloading module. cscfg_csdev_enable_config To address this, use cscfg_config_desc's active_cnt as a reference count which will be holded when - activate the config. - enable the activated config. and put the module reference when config_active_cnt == 0.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: coresight: holding cscfg_csdev_lock while removing cscfg from csdev There'll be possible race scenario for coresight config: CPU0 CPU1 (perf enable) load module cscfg_load_config_sets() activate config. // sysfs (sys_active_cnt == 1) ... cscfg_csdev_enable_active_config() lock(csdev->cscfg_csdev_lock) deactivate config // sysfs (sys_activec_cnt == 0) cscfg_unload_config_sets() <iterating config_csdev_list> cscfg_remove_owned_csdev_configs() // here load config activate by CPU1 unlock(csdev->cscfg_csdev_lock) iterating config_csdev_list could be raced with config_csdev_list's entry delete. To resolve this race , hold csdev->cscfg_csdev_lock() while cscfg_remove_owned_csdev_configs()
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: serial: Fix potential null-ptr-deref in mlb_usio_probe() devm_ioremap() can return NULL on error. Currently, mlb_usio_probe() does not check for this case, which could result in a NULL pointer dereference. Add NULL check after devm_ioremap() to prevent this issue.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_set_pipapo_avx2: fix initial map fill If the first field doesn't cover the entire start map, then we must zero out the remainder, else we leak those bits into the next match round map. The early fix was incomplete and did only fix up the generic C implementation. A followup patch adds a test case to nft_concat_range.sh.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03
In the Linux kernel, the following vulnerability has been resolved: gve: add missing NULL check for gve_alloc_pending_packet() in TX DQO gve_alloc_pending_packet() can return NULL, but gve_tx_add_skb_dqo() did not check for this case before dereferencing the returned pointer. Add a missing NULL check to prevent a potential NULL pointer dereference when allocation fails. This improves robustness in low-memory scenarios.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-03


Contact Us

Shodan ® - All rights reserved