Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 3.16.68  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: Kill URBs before clearing tx status queue In rtl8187_stop() move the call of usb_kill_anchored_urbs() before clearing b_tx_status.queue. This change prevents callbacks from using already freed skb due to anchor was not killed before freeing such skb. BUG: kernel NULL pointer dereference, address: 0000000000000080 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Not tainted 6.15.0 #8 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 RIP: 0010:ieee80211_tx_status_irqsafe+0x21/0xc0 [mac80211] Call Trace: <IRQ> rtl8187_tx_cb+0x116/0x150 [rtl8187] __usb_hcd_giveback_urb+0x9d/0x120 usb_giveback_urb_bh+0xbb/0x140 process_one_work+0x19b/0x3c0 bh_worker+0x1a7/0x210 tasklet_action+0x10/0x30 handle_softirqs+0xf0/0x340 __irq_exit_rcu+0xcd/0xf0 common_interrupt+0x85/0xa0 </IRQ> Tested on RTL8187BvE device. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: padata: Fix pd UAF once and for all There is a race condition/UAF in padata_reorder that goes back to the initial commit. A reference count is taken at the start of the process in padata_do_parallel, and released at the end in padata_serial_worker. This reference count is (and only is) required for padata_replace to function correctly. If padata_replace is never called then there is no issue. In the function padata_reorder which serves as the core of padata, as soon as padata is added to queue->serial.list, and the associated spin lock released, that padata may be processed and the reference count on pd would go away. Fix this by getting the next padata before the squeue->serial lock is released. In order to make this possible, simplify padata_reorder by only calling it once the next padata arrives.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: ipv6: reject malicious packets in ipv6_gso_segment() syzbot was able to craft a packet with very long IPv6 extension headers leading to an overflow of skb->transport_header. This 16bit field has a limited range. Add skb_reset_transport_header_careful() helper and use it from ipv6_gso_segment() WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 skb_reset_transport_header include/linux/skbuff.h:3032 [inline] WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Modules linked in: CPU: 0 UID: 0 PID: 5871 Comm: syz-executor211 Not tainted 6.16.0-rc6-syzkaller-g7abc678e3084 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025 RIP: 0010:skb_reset_transport_header include/linux/skbuff.h:3032 [inline] RIP: 0010:ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151 Call Trace: <TASK> skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 nsh_gso_segment+0x54a/0xe10 net/nsh/nsh.c:110 skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53 __skb_gso_segment+0x342/0x510 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x857/0x11b0 net/core/dev.c:3950 validate_xmit_skb_list+0x84/0x120 net/core/dev.c:4000 sch_direct_xmit+0xd3/0x4b0 net/sched/sch_generic.c:329 __dev_xmit_skb net/core/dev.c:4102 [inline] __dev_queue_xmit+0x17b6/0x3a70 net/core/dev.c:4679
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: pptp: ensure minimal skb length in pptp_xmit() Commit aabc6596ffb3 ("net: ppp: Add bound checking for skb data on ppp_sync_txmung") fixed ppp_sync_txmunge() We need a similar fix in pptp_xmit(), otherwise we might read uninit data as reported by syzbot. BUG: KMSAN: uninit-value in pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193 ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2290 [inline] ppp_input+0x1d6/0xe60 drivers/net/ppp/ppp_generic.c:2314 pppoe_rcv_core+0x1e8/0x760 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148 __release_sock+0x1d3/0x330 net/core/sock.c:3213 release_sock+0x6b/0x270 net/core/sock.c:3767 pppoe_sendmsg+0x15d/0xcb0 drivers/net/ppp/pppoe.c:904 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:727 ____sys_sendmsg+0x893/0xd80 net/socket.c:2566 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2620 __sys_sendmmsg+0x2d9/0x7c0 net/socket.c:2709
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: powerpc/eeh: Make EEH driver device hotplug safe Multiple race conditions existed between the PCIe hotplug driver and the EEH driver, leading to a variety of kernel oopses of the same general nature: <pcie device unplug> <eeh driver trigger> <hotplug removal trigger> <pcie tree reconfiguration> <eeh recovery next step> <oops in EEH driver bus iteration loop> A second class of oops is also seen when the underlying bus disappears during device recovery. Refactor the EEH module to be PCI rescan and remove safe. Also clean up a few minor formatting / readability issues.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: usb: gadget : fix use-after-free in composite_dev_cleanup() 1. In func configfs_composite_bind() -> composite_os_desc_req_prepare(): if kmalloc fails, the pointer cdev->os_desc_req will be freed but not set to NULL. Then it will return a failure to the upper-level function. 2. in func configfs_composite_bind() -> composite_dev_cleanup(): it will checks whether cdev->os_desc_req is NULL. If it is not NULL, it will attempt to use it.This will lead to a use-after-free issue. BUG: KASAN: use-after-free in composite_dev_cleanup+0xf4/0x2c0 Read of size 8 at addr 0000004827837a00 by task init/1 CPU: 10 PID: 1 Comm: init Tainted: G O 5.10.97-oh #1 kasan_report+0x188/0x1cc __asan_load8+0xb4/0xbc composite_dev_cleanup+0xf4/0x2c0 configfs_composite_bind+0x210/0x7ac udc_bind_to_driver+0xb4/0x1ec usb_gadget_probe_driver+0xec/0x21c gadget_dev_desc_UDC_store+0x264/0x27c
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: HID: core: Harden s32ton() against conversion to 0 bits Testing by the syzbot fuzzer showed that the HID core gets a shift-out-of-bounds exception when it tries to convert a 32-bit quantity to a 0-bit quantity. Ideally this should never occur, but there are buggy devices and some might have a report field with size set to zero; we shouldn't reject the report or the device just because of that. Instead, harden the s32ton() routine so that it returns a reasonable result instead of crashing when it is called with the number of bits set to 0 -- the same as what snto32() does.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: net/sched: Restrict conditions for adding duplicating netems to qdisc tree netem_enqueue's duplication prevention logic breaks when a netem resides in a qdisc tree with other netems - this can lead to a soft lockup and OOM loop in netem_dequeue, as seen in [1]. Ensure that a duplicating netem cannot exist in a tree with other netems. Previous approaches suggested in discussions in chronological order: 1) Track duplication status or ttl in the sk_buff struct. Considered too specific a use case to extend such a struct, though this would be a resilient fix and address other previous and potential future DOS bugs like the one described in loopy fun [2]. 2) Restrict netem_enqueue recursion depth like in act_mirred with a per cpu variable. However, netem_dequeue can call enqueue on its child, and the depth restriction could be bypassed if the child is a netem. 3) Use the same approach as in 2, but add metadata in netem_skb_cb to handle the netem_dequeue case and track a packet's involvement in duplication. This is an overly complex approach, and Jamal notes that the skb cb can be overwritten to circumvent this safeguard. 4) Prevent the addition of a netem to a qdisc tree if its ancestral path contains a netem. However, filters and actions can cause a packet to change paths when re-enqueued to the root from netem duplication, leading us to the current solution: prevent a duplicating netem from inhabiting the same tree as other netems. [1] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/ [2] https://lwn.net/Articles/719297/
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: net: appletalk: Fix device refcount leak in atrtr_create() When updating an existing route entry in atrtr_create(), the old device reference was not being released before assigning the new device, leading to a device refcount leak. Fix this by calling dev_put() to release the old device reference before holding the new one.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: atm: clip: Fix memory leak of struct clip_vcc. ioctl(ATMARP_MKIP) allocates struct clip_vcc and set it to vcc->user_back. The code assumes that vcc_destroy_socket() passes NULL skb to vcc->push() when the socket is close()d, and then clip_push() frees clip_vcc. However, ioctl(ATMARPD_CTRL) sets NULL to vcc->push() in atm_init_atmarp(), resulting in memory leak. Let's serialise two ioctl() by lock_sock() and check vcc->push() in atm_init_atmarp() to prevent memleak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16


Contact Us

Shodan ® - All rights reserved