In the Linux kernel, the following vulnerability has been resolved:
rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels
For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture
tests resulted in the following splat:
[ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0
[ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture]
[ 68.797601] Call Trace:
[ 68.797602] <TASK>
[ 68.797619] ? lockdep_softirqs_off+0xa5/0x160
[ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797646] ? local_clock+0x19/0x40
[ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797815] rcu-torture: rcu_torture_reader task started
[ 68.797824] rcu-torture: Creating rcu_torture_reader task
[ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797836] ? kvm_sched_clock_read+0x15/0x30
Disable BH does not change the SOFTIRQ corresponding bits in
preempt_count() for RT kernels, this commit therefore use
softirq_count() to check the if BH is disabled.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: shutdown driver when hardware is unreliable
In rare cases, ath10k may lose connection with the PCIe bus due to
some unknown reasons, which could further lead to system crashes during
resuming due to watchdog timeout:
ath10k_pci 0000:01:00.0: wmi command 20486 timeout, restarting hardware
ath10k_pci 0000:01:00.0: already restarting
ath10k_pci 0000:01:00.0: failed to stop WMI vdev 0: -11
ath10k_pci 0000:01:00.0: failed to stop vdev 0: -11
ieee80211 phy0: PM: **** DPM device timeout ****
Call Trace:
panic+0x125/0x315
dpm_watchdog_set+0x54/0x54
dpm_watchdog_handler+0x57/0x57
call_timer_fn+0x31/0x13c
At this point, all WMI commands will timeout and attempt to restart
device. So set a threshold for consecutive restart failures. If the
threshold is exceeded, consider the hardware is unreliable and all
ath10k operations should be skipped to avoid system crash.
fail_cont_count and pending_recovery are atomic variables, and
do not involve complex conditional logic. Therefore, even if recovery
check and reconfig complete are executed concurrently, the recovery
mechanism will not be broken.
Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1
In the Linux kernel, the following vulnerability has been resolved:
RDMA: hfi1: fix possible divide-by-zero in find_hw_thread_mask()
The function divides number of online CPUs by num_core_siblings, and
later checks the divider by zero. This implies a possibility to get
and divide-by-zero runtime error. Fix it by moving the check prior to
division. This also helps to save one indentation level.
In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup.
In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid deadlock by moving pr_warn() outside kmemleak_lock
When netpoll is enabled, calling pr_warn_once() while holding
kmemleak_lock in mem_pool_alloc() can cause a deadlock due to lock
inversion with the netconsole subsystem. This occurs because
pr_warn_once() may trigger netpoll, which eventually leads to
__alloc_skb() and back into kmemleak code, attempting to reacquire
kmemleak_lock.
This is the path for the deadlock.
mem_pool_alloc()
-> raw_spin_lock_irqsave(&kmemleak_lock, flags);
-> pr_warn_once()
-> netconsole subsystem
-> netpoll
-> __alloc_skb
-> __create_object
-> raw_spin_lock_irqsave(&kmemleak_lock, flags);
Fix this by setting a flag and issuing the pr_warn_once() after
kmemleak_lock is released.
In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix filehandle bounds checking in nfs_fh_to_dentry()
The function needs to check the minimal filehandle length before it can
access the embedded filehandle.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix sleeping-in-atomic in ath11k_mac_op_set_bitrate_mask()
ath11k_mac_disable_peer_fixed_rate() is passed as the iterator to
ieee80211_iterate_stations_atomic(). Note in this case the iterator is
required to be atomic, however ath11k_mac_disable_peer_fixed_rate() does
not follow it as it might sleep. Consequently below warning is seen:
BUG: sleeping function called from invalid context at wmi.c:304
Call Trace:
<TASK>
dump_stack_lvl
__might_resched.cold
ath11k_wmi_cmd_send
ath11k_wmi_set_peer_param
ath11k_mac_disable_peer_fixed_rate
ieee80211_iterate_stations_atomic
ath11k_mac_op_set_bitrate_mask.cold
Change to ieee80211_iterate_stations_mtx() to fix this issue.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: fix panic due to PSLVERR
When the PSLVERR_RESP_EN parameter is set to 1, the device generates
an error response if an attempt is made to read an empty RBR (Receive
Buffer Register) while the FIFO is enabled.
In serial8250_do_startup(), calling serial_port_out(port, UART_LCR,
UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes
dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter
function enables the FIFO via serial_out(p, UART_FCR, p->fcr).
Execution proceeds to the serial_port_in(port, UART_RX).
This satisfies the PSLVERR trigger condition.
When another CPU (e.g., using printk()) is accessing the UART (UART
is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) ==
(lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter
dw8250_force_idle().
Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock
to fix this issue.
Panic backtrace:
[ 0.442336] Oops - unknown exception [#1]
[ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a
[ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e
...
[ 0.442416] console_on_rootfs+0x26/0x70
In the Linux kernel, the following vulnerability has been resolved:
s390/ism: fix concurrency management in ism_cmd()
The s390x ISM device data sheet clearly states that only one
request-response sequence is allowable per ISM function at any point in
time. Unfortunately as of today the s390/ism driver in Linux does not
honor that requirement. This patch aims to rectify that.
This problem was discovered based on Aliaksei's bug report which states
that for certain workloads the ISM functions end up entering error state
(with PEC 2 as seen from the logs) after a while and as a consequence
connections handled by the respective function break, and for future
connection requests the ISM device is not considered -- given it is in a
dysfunctional state. During further debugging PEC 3A was observed as
well.
A kernel message like
[ 1211.244319] zpci: 061a:00:00.0: Event 0x2 reports an error for PCI function 0x61a
is a reliable indicator of the stated function entering error state
with PEC 2. Let me also point out that a kernel message like
[ 1211.244325] zpci: 061a:00:00.0: The ism driver bound to the device does not support error recovery
is a reliable indicator that the ISM function won't be auto-recovered
because the ISM driver currently lacks support for it.
On a technical level, without this synchronization, commands (inputs to
the FW) may be partially or fully overwritten (corrupted) by another CPU
trying to issue commands on the same function. There is hard evidence that
this can lead to DMB token values being used as DMB IOVAs, leading to
PEC 2 PCI events indicating invalid DMA. But this is only one of the
failure modes imaginable. In theory even completely losing one command
and executing another one twice and then trying to interpret the outputs
as if the command we intended to execute was actually executed and not
the other one is also possible. Frankly, I don't feel confident about
providing an exhaustive list of possible consequences.
In the Linux kernel, the following vulnerability has been resolved:
parisc: Revise __get_user() to probe user read access
Because of the way read access support is implemented, read access
interruptions are only triggered at privilege levels 2 and 3. The
kernel executes at privilege level 0, so __get_user() never triggers
a read access interruption (code 26). Thus, it is currently possible
for user code to access a read protected address via a system call.
Fix this by probing read access rights at privilege level 3 (PRIV_USER)
and setting __gu_err to -EFAULT (-14) if access isn't allowed.
Note the cmpiclr instruction does a 32-bit compare because COND macro
doesn't work inside asm.