Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.290  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix unreferenced object reported by kmemleak in ubi_resize_volume() There is a memory leaks problem reported by kmemleak: unreferenced object 0xffff888102007a00 (size 128): comm "ubirsvol", pid 32090, jiffies 4298464136 (age 2361.231s) hex dump (first 32 bytes): ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ backtrace: [<ffffffff8176cecd>] __kmalloc+0x4d/0x150 [<ffffffffa02a9a36>] ubi_eba_create_table+0x76/0x170 [ubi] [<ffffffffa029764e>] ubi_resize_volume+0x1be/0xbc0 [ubi] [<ffffffffa02a3321>] ubi_cdev_ioctl+0x701/0x1850 [ubi] [<ffffffff81975d2d>] __x64_sys_ioctl+0x11d/0x170 [<ffffffff83c142a5>] do_syscall_64+0x35/0x80 [<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 This is due to a mismatch between create and destroy interfaces, and in detail that "new_eba_tbl" created by ubi_eba_create_table() but destroyed by kfree(), while will causing "new_eba_tbl->entries" not freed. Fix it by replacing kfree(new_eba_tbl) with ubi_eba_destroy_table(new_eba_tbl)
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-16
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check S1G action frame size Before checking the action code, check that it even exists in the frame.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: VMCI: check context->notify_page after call to get_user_pages_fast() to avoid GPF The call to get_user_pages_fast() in vmci_host_setup_notify() can return NULL context->notify_page causing a GPF. To avoid GPF check if context->notify_page == NULL and return error if so. general protection fault, probably for non-canonical address 0xe0009d1000000060: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: maybe wild-memory-access in range [0x0005088000000300- 0x0005088000000307] CPU: 2 PID: 26180 Comm: repro_34802241 Not tainted 6.1.0-rc4 #1 Hardware name: Red Hat KVM, BIOS 1.15.0-2.module+el8.6.0 04/01/2014 RIP: 0010:vmci_ctx_check_signal_notify+0x91/0xe0 Call Trace: <TASK> vmci_host_unlocked_ioctl+0x362/0x1f40 __x64_sys_ioctl+0x1a1/0x230 do_syscall_64+0x3a/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: install stub fence into potential unused fence pointers When using cpu to update page tables, vm update fences are unused. Install stub fence into these fence pointers instead of NULL to avoid NULL dereference when calling dma_fence_wait() on them.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: firmware: dmi-sysfs: Fix null-ptr-deref in dmi_sysfs_register_handle KASAN reported a null-ptr-deref error: KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 1373 Comm: modprobe Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:dmi_sysfs_entry_release ... Call Trace: <TASK> kobject_put dmi_sysfs_register_handle (drivers/firmware/dmi-sysfs.c:540) dmi_sysfs dmi_decode_table (drivers/firmware/dmi_scan.c:133) dmi_walk (drivers/firmware/dmi_scan.c:1115) dmi_sysfs_init (drivers/firmware/dmi-sysfs.c:149) dmi_sysfs do_one_initcall (init/main.c:1296) ... Kernel panic - not syncing: Fatal exception Kernel Offset: 0x4000000 from 0xffffffff81000000 ---[ end Kernel panic - not syncing: Fatal exception ]--- It is because previous patch added kobject_put() to release the memory which will call dmi_sysfs_entry_release() and list_del(). However, list_add_tail(entry->list) is called after the error block, so the list_head is uninitialized and cannot be deleted. Move error handling to after list_add_tail to fix this.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: cacheinfo: Fix shared_cpu_map to handle shared caches at different levels The cacheinfo sets up the shared_cpu_map by checking whether the caches with the same index are shared between CPUs. However, this will trigger slab-out-of-bounds access if the CPUs do not have the same cache hierarchy. Another problem is the mismatched shared_cpu_map when the shared cache does not have the same index between CPUs. CPU0 I D L3 index 0 1 2 x ^ ^ ^ ^ index 0 1 2 3 CPU1 I D L2 L3 This patch checks each cache is shared with all caches on other CPUs.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: nfsd: call op_release, even when op_func returns an error For ops with "trivial" replies, nfsd4_encode_operation will shortcut most of the encoding work and skip to just marshalling up the status. One of the things it skips is calling op_release. This could cause a memory leak in the layoutget codepath if there is an error at an inopportune time. Have the compound processing engine always call op_release, even when op_func sets an error in op->status. With this change, we also need nfsd4_block_get_device_info_scsi to set the gd_device pointer to NULL on error to avoid a double free.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: media: pci: tw68: Fix null-ptr-deref bug in buf prepare and finish When the driver calls tw68_risc_buffer() to prepare the buffer, the function call dma_alloc_coherent may fail, resulting in a empty buffer buf->cpu. Later when we free the buffer or access the buffer, null ptr deref is triggered. This bug is similar to the following one: https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71. We believe the bug can be also dynamically triggered from user side. Similarly, we fix this by checking the return value of tw68_risc_buffer() and the value of buf->cpu before buffer free.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Fix handling of virtual Fibre Channel timeouts Hyper-V provides the ability to connect Fibre Channel LUNs to the host system and present them in a guest VM as a SCSI device. I/O to the vFC device is handled by the storvsc driver. The storvsc driver includes a partial integration with the FC transport implemented in the generic portion of the Linux SCSI subsystem so that FC attributes can be displayed in /sys. However, the partial integration means that some aspects of vFC don't work properly. Unfortunately, a full and correct integration isn't practical because of limitations in what Hyper-V provides to the guest. In particular, in the context of Hyper-V storvsc, the FC transport timeout function fc_eh_timed_out() causes a kernel panic because it can't find the rport and dereferences a NULL pointer. The original patch that added the call from storvsc_eh_timed_out() to fc_eh_timed_out() is faulty in this regard. In many cases a timeout is due to a transient condition, so the situation can be improved by just continuing to wait like with other I/O requests issued by storvsc, and avoiding the guaranteed panic. For a permanent failure, continuing to wait may result in a hung thread instead of a panic, which again may be better. So fix the panic by removing the storvsc call to fc_eh_timed_out(). This allows storvsc to keep waiting for a response. The change has been tested by users who experienced a panic in fc_eh_timed_out() due to transient timeouts, and it solves their problem. In the future we may want to deprecate the vFC functionality in storvsc since it can't be fully fixed. But it has current users for whom it is working well enough, so it should probably stay for a while longer.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: cifs: fix DFS traversal oops without CONFIG_CIFS_DFS_UPCALL When compiled with CONFIG_CIFS_DFS_UPCALL disabled, cifs_dfs_d_automount is NULL. cifs.ko logic for mapping CIFS_FATTR_DFS_REFERRAL attributes to S_AUTOMOUNT and corresponding dentry flags is retained regardless of CONFIG_CIFS_DFS_UPCALL, leading to a NULL pointer dereference in VFS follow_automount() when traversing a DFS referral link: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... Call Trace: <TASK> __traverse_mounts+0xb5/0x220 ? cifs_revalidate_mapping+0x65/0xc0 [cifs] step_into+0x195/0x610 ? lookup_fast+0xe2/0xf0 path_lookupat+0x64/0x140 filename_lookup+0xc2/0x140 ? __create_object+0x299/0x380 ? kmem_cache_alloc+0x119/0x220 ? user_path_at_empty+0x31/0x50 user_path_at_empty+0x31/0x50 __x64_sys_chdir+0x2a/0xd0 ? exit_to_user_mode_prepare+0xca/0x100 do_syscall_64+0x42/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc This fix adds an inline cifs_dfs_d_automount() {return -EREMOTE} handler when CONFIG_CIFS_DFS_UPCALL is disabled. An alternative would be to avoid flagging S_AUTOMOUNT, etc. without CONFIG_CIFS_DFS_UPCALL. This approach was chosen as it provides more control over the error path.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15


Contact Us

Shodan ® - All rights reserved