In the Linux kernel, the following vulnerability has been resolved:
media: az6007: Fix null-ptr-deref in az6007_i2c_xfer()
In az6007_i2c_xfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach az6007_i2c_xfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 0ed554fd769a
("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()")
In the Linux kernel, the following vulnerability has been resolved:
jfs: jfs_dmap: Validate db_l2nbperpage while mounting
In jfs_dmap.c at line 381, BLKTODMAP is used to get a logical block
number inside dbFree(). db_l2nbperpage, which is the log2 number of
blocks per page, is passed as an argument to BLKTODMAP which uses it
for shifting.
Syzbot reported a shift out-of-bounds crash because db_l2nbperpage is
too big. This happens because the large value is set without any
validation in dbMount() at line 181.
Thus, make sure that db_l2nbperpage is correct while mounting.
Max number of blocks per page = Page size / Min block size
=> log2(Max num_block per page) = log2(Page size / Min block size)
= log2(Page size) - log2(Min block size)
=> Max db_l2nbperpage = L2PSIZE - L2MINBLOCKSIZE
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211_hwsim: Fix possible NULL dereference
In a call to mac80211_hwsim_select_tx_link() the sta pointer might
be NULL, thus need to check that it is not NULL before accessing it.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: clean up skbs if ath9k_hif_usb_rx_stream() fails
Syzkaller detected a memory leak of skbs in ath9k_hif_usb_rx_stream().
While processing skbs in ath9k_hif_usb_rx_stream(), the already allocated
skbs in skb_pool are not freed if ath9k_hif_usb_rx_stream() fails. If we
have an incorrect pkt_len or pkt_tag, the input skb is considered invalid
and dropped. All the associated packets already in skb_pool should be
dropped and freed. Added a comment describing this issue.
The patch also makes remain_skb NULL after being processed so that it
cannot be referenced after potential free. The initialization of hif_dev
fields which are associated with remain_skb (rx_remain_len,
rx_transfer_len and rx_pad_len) is moved after a new remain_skb is
allocated.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: x_tables: fix percpu counter block leak on error path when creating new netns
Here is the stack where we allocate percpu counter block:
+-< __alloc_percpu
+-< xt_percpu_counter_alloc
+-< find_check_entry # {arp,ip,ip6}_tables.c
+-< translate_table
And it can be leaked on this code path:
+-> ip6t_register_table
+-> translate_table # allocates percpu counter block
+-> xt_register_table # fails
there is no freeing of the counter block on xt_register_table fail.
Note: xt_percpu_counter_free should be called to free it like we do in
do_replace through cleanup_entry helper (or in __ip6t_unregister_table).
Probability of hitting this error path is low AFAICS (xt_register_table
can only return ENOMEM here, as it is not replacing anything, as we are
creating new netns, and it is hard to imagine that all previous
allocations succeeded and after that one in xt_register_table failed).
But it's worth fixing even the rare leak.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: wraparound mbox producer index
Driver is not handling the wraparound of the mbox producer index correctly.
Currently the wraparound happens once u32 max is reached.
Bit 31 of the producer index register is special and should be set
only once for the first command. Because the producer index overflow
setting bit31 after a long time, FW goes to initialization sequence
and this causes FW hang.
Fix is to wraparound the mbox producer index once it reaches u16 max.
In the Linux kernel, the following vulnerability has been resolved:
crypto: cavium - prevent integer overflow loading firmware
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "ntohl(ucode->code_length) * 2" multiplication can have an
integer overflow.
In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: fix shift-out-of-bounds in dbDiscardAG
This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor.