An issue was discovered in GNOME GLib before 2.78.5, and 2.79.x and 2.80.x before 2.80.1. When a GDBus-based client subscribes to signals from a trusted system service such as NetworkManager on a shared computer, other users of the same computer can send spoofed D-Bus signals that the GDBus-based client will wrongly interpret as having been sent by the trusted system service. This could lead to the GDBus-based client behaving incorrectly, with an application-dependent impact.
nscd: Stack-based buffer overflow in netgroup cache
If the Name Service Cache Daemon's (nscd) fixed size cache is exhausted
by client requests then a subsequent client request for netgroup data
may result in a stack-based buffer overflow. This flaw was introduced
in glibc 2.15 when the cache was added to nscd.
This vulnerability is only present in the nscd binary.
nscd: Null pointer crashes after notfound response
If the Name Service Cache Daemon's (nscd) cache fails to add a not-found
netgroup response to the cache, the client request can result in a null
pointer dereference. This flaw was introduced in glibc 2.15 when the
cache was added to nscd.
This vulnerability is only present in the nscd binary.
nscd: netgroup cache may terminate daemon on memory allocation failure
The Name Service Cache Daemon's (nscd) netgroup cache uses xmalloc or
xrealloc and these functions may terminate the process due to a memory
allocation failure resulting in a denial of service to the clients. The
flaw was introduced in glibc 2.15 when the cache was added to nscd.
This vulnerability is only present in the nscd binary.
nscd: netgroup cache assumes NSS callback uses in-buffer strings
The Name Service Cache Daemon's (nscd) netgroup cache can corrupt memory
when the NSS callback does not store all strings in the provided buffer.
The flaw was introduced in glibc 2.15 when the cache was added to nscd.
This vulnerability is only present in the nscd binary.
In the Linux kernel, the following vulnerability has been resolved:
media: ttpci: fix two memleaks in budget_av_attach
When saa7146_register_device and saa7146_vv_init fails, budget_av_attach
should free the resources it allocates, like the error-handling of
ttpci_budget_init does. Besides, there are two fixme comment refers to
such deallocations.
In the Linux kernel, the following vulnerability has been resolved:
media: go7007: fix a memleak in go7007_load_encoder
In go7007_load_encoder, bounce(i.e. go->boot_fw), is allocated without
a deallocation thereafter. After the following call chain:
saa7134_go7007_init
|-> go7007_boot_encoder
|-> go7007_load_encoder
|-> kfree(go)
go is freed and thus bounce is leaked.
In the Linux kernel, the following vulnerability has been resolved:
media: imx: csc/scaler: fix v4l2_ctrl_handler memory leak
Free the memory allocated in v4l2_ctrl_handler_init on release.