In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc()
bt_sock_alloc() attaches allocated sk object to the provided sock object.
If rfcomm_dlc_alloc() fails, we release the sk object, but leave the
dangling pointer in the sock object, which may cause use-after-free.
Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc().
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create()
bt_sock_alloc() allocates the sk object and attaches it to the provided
sock object. On error l2cap_sock_alloc() frees the sk object, but the
dangling pointer is still attached to the sock object, which may create
use-after-free in other code.
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix oops due to NULL pointer dereference in brcmf_sdiod_sglist_rw()
This patch fixes a NULL pointer dereference bug in brcmfmac that occurs
when a high 'sd_sgentry_align' value applies (e.g. 512) and a lot of queued SKBs
are sent from the pkt queue.
The problem is the number of entries in the pre-allocated sgtable, it is
nents = max(rxglom_size, txglom_size) + max(rxglom_size, txglom_size) >> 4 + 1.
Given the default [rt]xglom_size=32 it's actually 35 which is too small.
Worst case, the pkt queue can end up with 64 SKBs. This occurs when a new SKB
is added for each original SKB if tailroom isn't enough to hold tail_pad.
At least one sg entry is needed for each SKB. So, eventually the "skb_queue_walk loop"
in brcmf_sdiod_sglist_rw may run out of sg entries. This makes sg_next return
NULL and this causes the oops.
The patch sets nents to max(rxglom_size, txglom_size) * 2 to be able handle
the worst-case.
Btw. this requires only 64-35=29 * 16 (or 20 if CONFIG_NEED_SG_DMA_LENGTH) = 464
additional bytes of memory.
In the Linux kernel, the following vulnerability has been resolved:
jfs: add a check to prevent array-index-out-of-bounds in dbAdjTree
When the value of lp is 0 at the beginning of the for loop, it will
become negative in the next assignment and we should bail out.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in jfs_readdir
The stbl might contain some invalid values. Added a check to
return error code in that case.
In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix use-after-free of slot->bus on hot remove
Dennis reports a boot crash on recent Lenovo laptops with a USB4 dock.
Since commit 0fc70886569c ("thunderbolt: Reset USB4 v2 host router") and
commit 59a54c5f3dbd ("thunderbolt: Reset topology created by the boot
firmware"), USB4 v2 and v1 Host Routers are reset on probe of the
thunderbolt driver.
The reset clears the Presence Detect State and Data Link Layer Link Active
bits at the USB4 Host Router's Root Port and thus causes hot removal of the
dock.
The crash occurs when pciehp is unbound from one of the dock's Downstream
Ports: pciehp creates a pci_slot on bind and destroys it on unbind. The
pci_slot contains a pointer to the pci_bus below the Downstream Port, but
a reference on that pci_bus is never acquired. The pci_bus is destroyed
before the pci_slot, so a use-after-free ensues when pci_slot_release()
accesses slot->bus.
In principle this should not happen because pci_stop_bus_device() unbinds
pciehp (and therefore destroys the pci_slot) before the pci_bus is
destroyed by pci_remove_bus_device().
However the stacktrace provided by Dennis shows that pciehp is unbound from
pci_remove_bus_device() instead of pci_stop_bus_device(). To understand
the significance of this, one needs to know that the PCI core uses a two
step process to remove a portion of the hierarchy: It first unbinds all
drivers in the sub-hierarchy in pci_stop_bus_device() and then actually
removes the devices in pci_remove_bus_device(). There is no precaution to
prevent driver binding in-between pci_stop_bus_device() and
pci_remove_bus_device().
In Dennis' case, it seems removal of the hierarchy by pciehp races with
driver binding by pci_bus_add_devices(). pciehp is bound to the
Downstream Port after pci_stop_bus_device() has run, so it is unbound by
pci_remove_bus_device() instead of pci_stop_bus_device(). Because the
pci_bus has already been destroyed at that point, accesses to it result in
a use-after-free.
One might conclude that driver binding needs to be prevented after
pci_stop_bus_device() has run. However it seems risky that pci_slot points
to pci_bus without holding a reference. Solely relying on correct ordering
of driver unbind versus pci_bus destruction is certainly not defensive
programming.
If pci_slot has a need to access data in pci_bus, it ought to acquire a
reference. Amend pci_create_slot() accordingly. Dennis reports that the
crash is not reproducible with this change.
Abridged stacktrace:
pcieport 0000:00:07.0: PME: Signaling with IRQ 156
pcieport 0000:00:07.0: pciehp: Slot #12 AttnBtn- PwrCtrl- MRL- AttnInd- PwrInd- HotPlug+ Surprise+ Interlock- NoCompl+ IbPresDis- LLActRep+
pci_bus 0000:20: dev 00, created physical slot 12
pcieport 0000:00:07.0: pciehp: Slot(12): Card not present
...
pcieport 0000:21:02.0: pciehp: pcie_disable_notification: SLOTCTRL d8 write cmd 0
Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI
CPU: 13 UID: 0 PID: 134 Comm: irq/156-pciehp Not tainted 6.11.0-devel+ #1
RIP: 0010:dev_driver_string+0x12/0x40
pci_destroy_slot
pciehp_remove
pcie_port_remove_service
device_release_driver_internal
bus_remove_device
device_del
device_unregister
remove_iter
device_for_each_child
pcie_portdrv_remove
pci_device_remove
device_release_driver_internal
bus_remove_device
device_del
pci_remove_bus_device (recursive invocation)
pci_remove_bus_device
pciehp_unconfigure_device
pciehp_disable_slot
pciehp_handle_presence_or_link_change
pciehp_ist
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential out-of-bound accesses for Extigy and Mbox devices
A bogus device can provide a bNumConfigurations value that exceeds the
initial value used in usb_get_configuration for allocating dev->config.
This can lead to out-of-bounds accesses later, e.g. in
usb_destroy_configuration.