In the Linux kernel, the following vulnerability has been resolved:
net: inet6: do not leave a dangling sk pointer in inet6_create()
sock_init_data() attaches the allocated sk pointer to the provided sock
object. If inet6_create() fails later, the sk object is released, but the
sock object retains the dangling sk pointer, which may cause use-after-free
later.
Clear the sock sk pointer on error.
In the Linux kernel, the following vulnerability has been resolved:
net: inet: do not leave a dangling sk pointer in inet_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If inet_create() fails later, the sk object is freed, but the
sock object retains the dangling pointer, which may create use-after-free
later.
Clear the sk pointer in the sock object on error.
In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: do not leave a dangling sk pointer in ieee802154_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If ieee802154_create() fails later, the allocated sk object is
freed, but the dangling pointer remains in the provided sock object, which
may allow use-after-free.
Clear the sk pointer in the sock object on error.
In the Linux kernel, the following vulnerability has been resolved:
net: af_can: do not leave a dangling sk pointer in can_create()
On error can_create() frees the allocated sk object, but sock_init_data()
has already attached it to the provided sock object. This will leave a
dangling sk pointer in the sock object and may cause use-after-free later.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc()
bt_sock_alloc() attaches allocated sk object to the provided sock object.
If rfcomm_dlc_alloc() fails, we release the sk object, but leave the
dangling pointer in the sock object, which may cause use-after-free.
Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc().
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create()
bt_sock_alloc() allocates the sk object and attaches it to the provided
sock object. On error l2cap_sock_alloc() frees the sk object, but the
dangling pointer is still attached to the sock object, which may create
use-after-free in other code.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix not checking skb length on hci_acldata_packet
This fixes not checking if skb really contains an ACL header otherwise
the code may attempt to access some uninitilized/invalid memory past the
valid skb->data.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Use disable_delayed_work_sync
This makes use of disable_delayed_work_sync instead
cancel_delayed_work_sync as it not only cancel the ongoing work but also
disables new submit which is disarable since the object holding the work
is about to be freed.
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix oops due to NULL pointer dereference in brcmf_sdiod_sglist_rw()
This patch fixes a NULL pointer dereference bug in brcmfmac that occurs
when a high 'sd_sgentry_align' value applies (e.g. 512) and a lot of queued SKBs
are sent from the pkt queue.
The problem is the number of entries in the pre-allocated sgtable, it is
nents = max(rxglom_size, txglom_size) + max(rxglom_size, txglom_size) >> 4 + 1.
Given the default [rt]xglom_size=32 it's actually 35 which is too small.
Worst case, the pkt queue can end up with 64 SKBs. This occurs when a new SKB
is added for each original SKB if tailroom isn't enough to hold tail_pad.
At least one sg entry is needed for each SKB. So, eventually the "skb_queue_walk loop"
in brcmf_sdiod_sglist_rw may run out of sg entries. This makes sg_next return
NULL and this causes the oops.
The patch sets nents to max(rxglom_size, txglom_size) * 2 to be able handle
the worst-case.
Btw. this requires only 64-35=29 * 16 (or 20 if CONFIG_NEED_SG_DMA_LENGTH) = 464
additional bytes of memory.