In the Linux kernel, the following vulnerability has been resolved:
lz4: fix LZ4_decompress_safe_partial read out of bound
When partialDecoding, it is EOF if we've either filled the output buffer
or can't proceed with reading an offset for following match.
In some extreme corner cases when compressed data is suitably corrupted,
UAF will occur. As reported by KASAN [1], LZ4_decompress_safe_partial
may lead to read out of bound problem during decoding. lz4 upstream has
fixed it [2] and this issue has been disscussed here [3] before.
current decompression routine was ported from lz4 v1.8.3, bumping
lib/lz4 to v1.9.+ is certainly a huge work to be done later, so, we'd
better fix it first.
[1] https://lore.kernel.org/all/000000000000830d1205cf7f0477@google.com/
[2] https://github.com/lz4/lz4/commit/c5d6f8a8be3927c0bec91bcc58667a6cfad244ad#
[3] https://lore.kernel.org/all/CC666AE8-4CA4-4951-B6FB-A2EFDE3AC03B@fb.com/
In the Linux kernel, the following vulnerability has been resolved:
gpio: Restrict usage of GPIO chip irq members before initialization
GPIO chip irq members are exposed before they could be completely
initialized and this leads to race conditions.
One such issue was observed for the gc->irq.domain variable which
was accessed through the I2C interface in gpiochip_to_irq() before
it could be initialized by gpiochip_add_irqchip(). This resulted in
Kernel NULL pointer dereference.
Following are the logs for reference :-
kernel: Call Trace:
kernel: gpiod_to_irq+0x53/0x70
kernel: acpi_dev_gpio_irq_get_by+0x113/0x1f0
kernel: i2c_acpi_get_irq+0xc0/0xd0
kernel: i2c_device_probe+0x28a/0x2a0
kernel: really_probe+0xf2/0x460
kernel: RIP: 0010:gpiochip_to_irq+0x47/0xc0
To avoid such scenarios, restrict usage of GPIO chip irq members before
they are completely initialized.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix qgroup reserve overflow the qgroup limit
We use extent_changeset->bytes_changed in qgroup_reserve_data() to record
how many bytes we set for EXTENT_QGROUP_RESERVED state. Currently the
bytes_changed is set as "unsigned int", and it will overflow if we try to
fallocate a range larger than 4GiB. The result is we reserve less bytes
and eventually break the qgroup limit.
Unlike regular buffered/direct write, which we use one changeset for
each ordered extent, which can never be larger than 256M. For
fallocate, we use one changeset for the whole range, thus it no longer
respects the 256M per extent limit, and caused the problem.
The following example test script reproduces the problem:
$ cat qgroup-overflow.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Set qgroup limit to 2GiB.
btrfs quota enable $MNT
btrfs qgroup limit 2G $MNT
# Try to fallocate a 3GiB file. This should fail.
echo
echo "Try to fallocate a 3GiB file..."
fallocate -l 3G $MNT/3G.file
# Try to fallocate a 5GiB file.
echo
echo "Try to fallocate a 5GiB file..."
fallocate -l 5G $MNT/5G.file
# See we break the qgroup limit.
echo
sync
btrfs qgroup show -r $MNT
umount $MNT
When running the test:
$ ./qgroup-overflow.sh
(...)
Try to fallocate a 3GiB file...
fallocate: fallocate failed: Disk quota exceeded
Try to fallocate a 5GiB file...
qgroupid rfer excl max_rfer
-------- ---- ---- --------
0/5 5.00GiB 5.00GiB 2.00GiB
Since we have no control of how bytes_changed is used, it's better to
set it to u64.
In the Linux kernel, the following vulnerability has been resolved:
powerpc: Fix virt_addr_valid() for 64-bit Book3E & 32-bit
mpe: On 64-bit Book3E vmalloc space starts at 0x8000000000000000.
Because of the way __pa() works we have:
__pa(0x8000000000000000) == 0, and therefore
virt_to_pfn(0x8000000000000000) == 0, and therefore
virt_addr_valid(0x8000000000000000) == true
Which is wrong, virt_addr_valid() should be false for vmalloc space.
In fact all vmalloc addresses that alias with a valid PFN will return
true from virt_addr_valid(). That can cause bugs with hardened usercopy
as described below by Kefeng Wang:
When running ethtool eth0 on 64-bit Book3E, a BUG occurred:
usercopy: Kernel memory exposure attempt detected from SLUB object not in SLUB page?! (offset 0, size 1048)!
kernel BUG at mm/usercopy.c:99
...
usercopy_abort+0x64/0xa0 (unreliable)
__check_heap_object+0x168/0x190
__check_object_size+0x1a0/0x200
dev_ethtool+0x2494/0x2b20
dev_ioctl+0x5d0/0x770
sock_do_ioctl+0xf0/0x1d0
sock_ioctl+0x3ec/0x5a0
__se_sys_ioctl+0xf0/0x160
system_call_exception+0xfc/0x1f0
system_call_common+0xf8/0x200
The code shows below,
data = vzalloc(array_size(gstrings.len, ETH_GSTRING_LEN));
copy_to_user(useraddr, data, gstrings.len * ETH_GSTRING_LEN))
The data is alloced by vmalloc(), virt_addr_valid(ptr) will return true
on 64-bit Book3E, which leads to the panic.
As commit 4dd7554a6456 ("powerpc/64: Add VIRTUAL_BUG_ON checks for __va
and __pa addresses") does, make sure the virt addr above PAGE_OFFSET in
the virt_addr_valid() for 64-bit, also add upper limit check to make
sure the virt is below high_memory.
Meanwhile, for 32-bit PAGE_OFFSET is the virtual address of the start
of lowmem, high_memory is the upper low virtual address, the check is
suitable for 32-bit, this will fix the issue mentioned in commit
602946ec2f90 ("powerpc: Set max_mapnr correctly") too.
On 32-bit there is a similar problem with high memory, that was fixed in
commit 602946ec2f90 ("powerpc: Set max_mapnr correctly"), but that
commit breaks highmem and needs to be reverted.
We can't easily fix __pa(), we have code that relies on its current
behaviour. So for now add extra checks to virt_addr_valid().
For 64-bit Book3S the extra checks are not necessary, the combination of
virt_to_pfn() and pfn_valid() should yield the correct result, but they
are harmless.
[mpe: Add additional change log detail]
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcmu: Fix possible page UAF
tcmu_try_get_data_page() looks up pages under cmdr_lock, but it does not
take refcount properly and just returns page pointer. When
tcmu_try_get_data_page() returns, the returned page may have been freed by
tcmu_blocks_release().
We need to get_page() under cmdr_lock to avoid concurrent
tcmu_blocks_release().
In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Deactivate sysctl_record_panic_msg by default in isolated guests
hv_panic_page might contain guest-sensitive information, do not dump it
over to Hyper-V by default in isolated guests.
While at it, update some comments in hyperv_{panic,die}_event().
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Check for potential null return of kmalloc_array()
As the kmalloc_array() may return null, the 'event_waiters[i].wait' would lead to null-pointer dereference.
Therefore, it is better to check the return value of kmalloc_array() to avoid this confusion.
In the Linux kernel, the following vulnerability has been resolved:
samples/landlock: Fix path_list memory leak
Clang static analysis reports this error
sandboxer.c:134:8: warning: Potential leak of memory
pointed to by 'path_list'
ret = 0;
^
path_list is allocated in parse_path() but never freed.
In the Linux kernel, the following vulnerability has been resolved:
media: staging: media: zoran: move videodev alloc
Move some code out of zr36057_init() and create new functions for handling
zr->video_dev. This permit to ease code reading and fix a zr->video_dev
memory leak.
In the Linux kernel, the following vulnerability has been resolved:
media: staging: media: zoran: calculate the right buffer number for zoran_reap_stat_com
On the case tmp_dcim=1, the index of buffer is miscalculated.
This generate a NULL pointer dereference later.
So let's fix the calcul and add a check to prevent this to reappear.