In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix extent map use-after-free when handling missing device in read_one_chunk
Store the error code before freeing the extent_map. Though it's
reference counted structure, in that function it's the first and last
allocation so this would lead to a potential use-after-free.
The error can happen eg. when chunk is stored on a missing device and
the degraded mount option is missing.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix double release compute pasid
If kfd_process_device_init_vm returns failure after vm is converted to
compute vm and vm->pasid set to compute pasid, KFD will not take
pdd->drm_file reference. As a result, drm close file handler maybe
called to release the compute pasid before KFD process destroy worker to
release the same pasid and set vm->pasid to zero, this generates below
WARNING backtrace and NULL pointer access.
Add helper amdgpu_amdkfd_gpuvm_set_vm_pasid and call it at the last step
of kfd_process_device_init_vm, to ensure vm pasid is the original pasid
if acquiring vm failed or is the compute pasid with pdd->drm_file
reference taken to avoid double release same pasid.
amdgpu: Failed to create process VM object
ida_free called for id=32770 which is not allocated.
WARNING: CPU: 57 PID: 72542 at ../lib/idr.c:522 ida_free+0x96/0x140
RIP: 0010:ida_free+0x96/0x140
Call Trace:
amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu]
amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu]
drm_file_free.part.13+0x216/0x270 [drm]
drm_close_helper.isra.14+0x60/0x70 [drm]
drm_release+0x6e/0xf0 [drm]
__fput+0xcc/0x280
____fput+0xe/0x20
task_work_run+0x96/0xc0
do_exit+0x3d0/0xc10
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: 0010:ida_free+0x76/0x140
Call Trace:
amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu]
amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu]
drm_file_free.part.13+0x216/0x270 [drm]
drm_close_helper.isra.14+0x60/0x70 [drm]
drm_release+0x6e/0xf0 [drm]
__fput+0xcc/0x280
____fput+0xe/0x20
task_work_run+0x96/0xc0
do_exit+0x3d0/0xc10
In the Linux kernel, the following vulnerability has been resolved:
mtd: core: fix possible resource leak in init_mtd()
I got the error report while inject fault in init_mtd():
sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0'
Call Trace:
<TASK>
dump_stack_lvl+0x67/0x83
sysfs_warn_dup+0x60/0x70
sysfs_create_dir_ns+0x109/0x120
kobject_add_internal+0xce/0x2f0
kobject_add+0x98/0x110
device_add+0x179/0xc00
device_create_groups_vargs+0xf4/0x100
device_create+0x7b/0xb0
bdi_register_va.part.13+0x58/0x2d0
bdi_register+0x9b/0xb0
init_mtd+0x62/0x171 [mtd]
do_one_initcall+0x6c/0x3c0
do_init_module+0x58/0x222
load_module+0x268e/0x27d0
__do_sys_finit_module+0xd5/0x140
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register
things with the same name in the same directory.
Error registering mtd class or bdi: -17
If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered,
as a result, we can't load the mtd module again, to fix this by calling
bdi_unregister(mtd_bdi) after out_procfs label.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not BUG_ON() on ENOMEM when dropping extent items for a range
If we get -ENOMEM while dropping file extent items in a given range, at
btrfs_drop_extents(), due to failure to allocate memory when attempting to
increment the reference count for an extent or drop the reference count,
we handle it with a BUG_ON(). This is excessive, instead we can simply
abort the transaction and return the error to the caller. In fact most
callers of btrfs_drop_extents(), directly or indirectly, already abort
the transaction if btrfs_drop_extents() returns any error.
Also, we already have error paths at btrfs_drop_extents() that may return
-ENOMEM and in those cases we abort the transaction, like for example
anything that changes the b+tree may return -ENOMEM due to a failure to
allocate a new extent buffer when COWing an existing extent buffer, such
as a call to btrfs_duplicate_item() for example.
So replace the BUG_ON() calls with proper logic to abort the transaction
and return the error.
In the Linux kernel, the following vulnerability has been resolved:
kprobes: Fix check for probe enabled in kill_kprobe()
In kill_kprobe(), the check whether disarm_kprobe_ftrace() needs to be
called always fails. This is because before that we set the
KPROBE_FLAG_GONE flag for kprobe so that "!kprobe_disabled(p)" is always
false.
The disarm_kprobe_ftrace() call introduced by commit:
0cb2f1372baa ("kprobes: Fix NULL pointer dereference at kprobe_ftrace_handler")
to fix the NULL pointer reference problem. When the probe is enabled, if
we do not disarm it, this problem still exists.
Fix it by putting the probe enabled check before setting the
KPROBE_FLAG_GONE flag.
In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_pci: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, beside, runtime PM also needs be disabled.
In the Linux kernel, the following vulnerability has been resolved:
USB: uhci: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix race on port output
assume the following setup on a single machine:
1. An openvswitch instance with one bridge and default flows
2. two network namespaces "server" and "client"
3. two ovs interfaces "server" and "client" on the bridge
4. for each ovs interface a veth pair with a matching name and 32 rx and
tx queues
5. move the ends of the veth pairs to the respective network namespaces
6. assign ip addresses to each of the veth ends in the namespaces (needs
to be the same subnet)
7. start some http server on the server network namespace
8. test if a client in the client namespace can reach the http server
when following the actions below the host has a chance of getting a cpu
stuck in a infinite loop:
1. send a large amount of parallel requests to the http server (around
3000 curls should work)
2. in parallel delete the network namespace (do not delete interfaces or
stop the server, just kill the namespace)
there is a low chance that this will cause the below kernel cpu stuck
message. If this does not happen just retry.
Below there is also the output of bpftrace for the functions mentioned
in the output.
The series of events happening here is:
1. the network namespace is deleted calling
`unregister_netdevice_many_notify` somewhere in the process
2. this sets first `NETREG_UNREGISTERING` on both ends of the veth and
then runs `synchronize_net`
3. it then calls `call_netdevice_notifiers` with `NETDEV_UNREGISTER`
4. this is then handled by `dp_device_event` which calls
`ovs_netdev_detach_dev` (if a vport is found, which is the case for
the veth interface attached to ovs)
5. this removes the rx_handlers of the device but does not prevent
packages to be sent to the device
6. `dp_device_event` then queues the vport deletion to work in
background as a ovs_lock is needed that we do not hold in the
unregistration path
7. `unregister_netdevice_many_notify` continues to call
`netdev_unregister_kobject` which sets `real_num_tx_queues` to 0
8. port deletion continues (but details are not relevant for this issue)
9. at some future point the background task deletes the vport
If after 7. but before 9. a packet is send to the ovs vport (which is
not deleted at this point in time) which forwards it to the
`dev_queue_xmit` flow even though the device is unregistering.
In `skb_tx_hash` (which is called in the `dev_queue_xmit`) path there is
a while loop (if the packet has a rx_queue recorded) that is infinite if
`dev->real_num_tx_queues` is zero.
To prevent this from happening we update `do_output` to handle devices
without carrier the same as if the device is not found (which would
be the code path after 9. is done).
Additionally we now produce a warning in `skb_tx_hash` if we will hit
the infinite loop.
bpftrace (first word is function name):
__dev_queue_xmit server: real_num_tx_queues: 1, cpu: 2, pid: 28024, tid: 28024, skb_addr: 0xffff9edb6f207000, reg_state: 1
netdev_core_pick_tx server: addr: 0xffff9f0a46d4a000 real_num_tx_queues: 1, cpu: 2, pid: 28024, tid: 28024, skb_addr: 0xffff9edb6f207000, reg_state: 1
dp_device_event server: real_num_tx_queues: 1 cpu 9, pid: 21024, tid: 21024, event 2, reg_state: 1
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
dp_device_event server: real_num_tx_queues: 1 cpu 9, pid: 21024, tid: 21024, event 6, reg_state: 2
ovs_netdev_detach_dev server: real_num_tx_queues: 1 cpu 9, pid: 21024, tid: 21024, reg_state: 2
netdev_rx_handler_unregister server: real_num_tx_queues: 1, cpu: 9, pid: 21024, tid: 21024, reg_state: 2
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
netdev_rx_handler_unregister ret server: real_num_tx_queues: 1, cpu: 9, pid: 21024, tid: 21024, reg_state: 2
dp_
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
tty: pcn_uart: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
mm: fix zswap writeback race condition
The zswap writeback mechanism can cause a race condition resulting in
memory corruption, where a swapped out page gets swapped in with data that
was written to a different page.
The race unfolds like this:
1. a page with data A and swap offset X is stored in zswap
2. page A is removed off the LRU by zpool driver for writeback in
zswap-shrink work, data for A is mapped by zpool driver
3. user space program faults and invalidates page entry A, offset X is
considered free
4. kswapd stores page B at offset X in zswap (zswap could also be
full, if so, page B would then be IOed to X, then skip step 5.)
5. entry A is replaced by B in tree->rbroot, this doesn't affect the
local reference held by zswap-shrink work
6. zswap-shrink work writes back A at X, and frees zswap entry A
7. swapin of slot X brings A in memory instead of B
The fix:
Once the swap page cache has been allocated (case ZSWAP_SWAPCACHE_NEW),
zswap-shrink work just checks that the local zswap_entry reference is
still the same as the one in the tree. If it's not the same it means that
it's either been invalidated or replaced, in both cases the writeback is
aborted because the local entry contains stale data.
Reproducer:
I originally found this by running `stress` overnight to validate my work
on the zswap writeback mechanism, it manifested after hours on my test
machine. The key to make it happen is having zswap writebacks, so
whatever setup pumps /sys/kernel/debug/zswap/written_back_pages should do
the trick.
In order to reproduce this faster on a vm, I setup a system with ~100M of
available memory and a 500M swap file, then running `stress --vm 1
--vm-bytes 300000000 --vm-stride 4000` makes it happen in matter of tens
of minutes. One can speed things up even more by swinging
/sys/module/zswap/parameters/max_pool_percent up and down between, say, 20
and 1; this makes it reproduce in tens of seconds. It's crucial to set
`--vm-stride` to something other than 4096 otherwise `stress` won't
realize that memory has been corrupted because all pages would have the
same data.