In the Linux kernel, the following vulnerability has been resolved:
ext4: fix potential out of bound read in ext4_fc_replay_scan()
For scan loop must ensure that at least EXT4_FC_TAG_BASE_LEN space. If remain
space less than EXT4_FC_TAG_BASE_LEN which will lead to out of bound read
when mounting corrupt file system image.
ADD_RANGE/HEAD/TAIL is needed to add extra check when do journal scan, as this
three tags will read data during scan, tag length couldn't less than data length
which will read.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix double release compute pasid
If kfd_process_device_init_vm returns failure after vm is converted to
compute vm and vm->pasid set to compute pasid, KFD will not take
pdd->drm_file reference. As a result, drm close file handler maybe
called to release the compute pasid before KFD process destroy worker to
release the same pasid and set vm->pasid to zero, this generates below
WARNING backtrace and NULL pointer access.
Add helper amdgpu_amdkfd_gpuvm_set_vm_pasid and call it at the last step
of kfd_process_device_init_vm, to ensure vm pasid is the original pasid
if acquiring vm failed or is the compute pasid with pdd->drm_file
reference taken to avoid double release same pasid.
amdgpu: Failed to create process VM object
ida_free called for id=32770 which is not allocated.
WARNING: CPU: 57 PID: 72542 at ../lib/idr.c:522 ida_free+0x96/0x140
RIP: 0010:ida_free+0x96/0x140
Call Trace:
amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu]
amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu]
drm_file_free.part.13+0x216/0x270 [drm]
drm_close_helper.isra.14+0x60/0x70 [drm]
drm_release+0x6e/0xf0 [drm]
__fput+0xcc/0x280
____fput+0xe/0x20
task_work_run+0x96/0xc0
do_exit+0x3d0/0xc10
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: 0010:ida_free+0x76/0x140
Call Trace:
amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu]
amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu]
drm_file_free.part.13+0x216/0x270 [drm]
drm_close_helper.isra.14+0x60/0x70 [drm]
drm_release+0x6e/0xf0 [drm]
__fput+0xcc/0x280
____fput+0xe/0x20
task_work_run+0x96/0xc0
do_exit+0x3d0/0xc10
In the Linux kernel, the following vulnerability has been resolved:
mtd: core: fix possible resource leak in init_mtd()
I got the error report while inject fault in init_mtd():
sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0'
Call Trace:
<TASK>
dump_stack_lvl+0x67/0x83
sysfs_warn_dup+0x60/0x70
sysfs_create_dir_ns+0x109/0x120
kobject_add_internal+0xce/0x2f0
kobject_add+0x98/0x110
device_add+0x179/0xc00
device_create_groups_vargs+0xf4/0x100
device_create+0x7b/0xb0
bdi_register_va.part.13+0x58/0x2d0
bdi_register+0x9b/0xb0
init_mtd+0x62/0x171 [mtd]
do_one_initcall+0x6c/0x3c0
do_init_module+0x58/0x222
load_module+0x268e/0x27d0
__do_sys_finit_module+0xd5/0x140
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register
things with the same name in the same directory.
Error registering mtd class or bdi: -17
If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered,
as a result, we can't load the mtd module again, to fix this by calling
bdi_unregister(mtd_bdi) after out_procfs label.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not BUG_ON() on ENOMEM when dropping extent items for a range
If we get -ENOMEM while dropping file extent items in a given range, at
btrfs_drop_extents(), due to failure to allocate memory when attempting to
increment the reference count for an extent or drop the reference count,
we handle it with a BUG_ON(). This is excessive, instead we can simply
abort the transaction and return the error to the caller. In fact most
callers of btrfs_drop_extents(), directly or indirectly, already abort
the transaction if btrfs_drop_extents() returns any error.
Also, we already have error paths at btrfs_drop_extents() that may return
-ENOMEM and in those cases we abort the transaction, like for example
anything that changes the b+tree may return -ENOMEM due to a failure to
allocate a new extent buffer when COWing an existing extent buffer, such
as a call to btrfs_duplicate_item() for example.
So replace the BUG_ON() calls with proper logic to abort the transaction
and return the error.
In the Linux kernel, the following vulnerability has been resolved:
wifi: libertas: fix memory leak in lbs_init_adapter()
When kfifo_alloc() failed in lbs_init_adapter(), cmd buffer is not
released. Add free memory to processing error path.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix delayed allocation bug in ext4_clu_mapped for bigalloc + inline
When converting files with inline data to extents, delayed allocations
made on a file system created with both the bigalloc and inline options
can result in invalid extent status cache content, incorrect reserved
cluster counts, kernel memory leaks, and potential kernel panics.
With bigalloc, the code that determines whether a block must be
delayed allocated searches the extent tree to see if that block maps
to a previously allocated cluster. If not, the block is delayed
allocated, and otherwise, it isn't. However, if the inline option is
also used, and if the file containing the block is marked as able to
store data inline, there isn't a valid extent tree associated with
the file. The current code in ext4_clu_mapped() calls
ext4_find_extent() to search the non-existent tree for a previously
allocated cluster anyway, which typically finds nothing, as desired.
However, a side effect of the search can be to cache invalid content
from the non-existent tree (garbage) in the extent status tree,
including bogus entries in the pending reservation tree.
To fix this, avoid searching the extent tree when allocating blocks
for bigalloc + inline files that are being converted from inline to
extent mapped.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on destination blkaddr during recovery
As Wenqing Liu reported in bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=216456
loop5: detected capacity change from 0 to 131072
F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1
F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0
F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1
F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0
F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1
F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0
F2FS-fs (loop5): Bitmap was wrongly set, blk:5634
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1013 at fs/f2fs/segment.c:2198
RIP: 0010:update_sit_entry+0xa55/0x10b0 [f2fs]
Call Trace:
<TASK>
f2fs_do_replace_block+0xa98/0x1890 [f2fs]
f2fs_replace_block+0xeb/0x180 [f2fs]
recover_data+0x1a69/0x6ae0 [f2fs]
f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs]
f2fs_fill_super+0x4665/0x61e0 [f2fs]
mount_bdev+0x2cf/0x3b0
legacy_get_tree+0xed/0x1d0
vfs_get_tree+0x81/0x2b0
path_mount+0x47e/0x19d0
do_mount+0xce/0xf0
__x64_sys_mount+0x12c/0x1a0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
If we enable CONFIG_F2FS_CHECK_FS config, it will trigger a kernel panic
instead of warning.
The root cause is: in fuzzed image, SIT table is inconsistent with inode
mapping table, result in triggering such warning during SIT table update.
This patch introduces a new flag DATA_GENERIC_ENHANCE_UPDATE, w/ this
flag, data block recovery flow can check destination blkaddr's validation
in SIT table, and skip f2fs_replace_block() to avoid inconsistent status.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: Fix global-out-of-bounds bug in _rtl8812ae_phy_set_txpower_limit()
There is a global-out-of-bounds reported by KASAN:
BUG: KASAN: global-out-of-bounds in
_rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae]
Read of size 1 at addr ffffffffa0773c43 by task NetworkManager/411
CPU: 6 PID: 411 Comm: NetworkManager Tainted: G D
6.1.0-rc8+ #144 e15588508517267d37
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
Call Trace:
<TASK>
...
kasan_report+0xbb/0x1c0
_rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae]
rtl8821ae_phy_bb_config.cold+0x346/0x641 [rtl8821ae]
rtl8821ae_hw_init+0x1f5e/0x79b0 [rtl8821ae]
...
</TASK>
The root cause of the problem is that the comparison order of
"prate_section" in _rtl8812ae_phy_set_txpower_limit() is wrong. The
_rtl8812ae_eq_n_byte() is used to compare the first n bytes of the two
strings from tail to head, which causes the problem. In the
_rtl8812ae_phy_set_txpower_limit(), it was originally intended to meet
this requirement by carefully designing the comparison order.
For example, "pregulation" and "pbandwidth" are compared in order of
length from small to large, first is 3 and last is 4. However, the
comparison order of "prate_section" dose not obey such order requirement,
therefore when "prate_section" is "HT", when comparing from tail to head,
it will lead to access out of bounds in _rtl8812ae_eq_n_byte(). As
mentioned above, the _rtl8812ae_eq_n_byte() has the same function as
strcmp(), so just strcmp() is enough.
Fix it by removing _rtl8812ae_eq_n_byte() and use strcmp() barely.
Although it can be fixed by adjusting the comparison order of
"prate_section", this may cause the value of "rate_section" to not be
from 0 to 5. In addition, commit "21e4b0726dc6" not only moved driver
from staging to regular tree, but also added setting txpower limit
function during the driver config phase, so the problem was introduced
by this commit.
In the Linux kernel, the following vulnerability has been resolved:
kprobes: Fix check for probe enabled in kill_kprobe()
In kill_kprobe(), the check whether disarm_kprobe_ftrace() needs to be
called always fails. This is because before that we set the
KPROBE_FLAG_GONE flag for kprobe so that "!kprobe_disabled(p)" is always
false.
The disarm_kprobe_ftrace() call introduced by commit:
0cb2f1372baa ("kprobes: Fix NULL pointer dereference at kprobe_ftrace_handler")
to fix the NULL pointer reference problem. When the probe is enabled, if
we do not disarm it, this problem still exists.
Fix it by putting the probe enabled check before setting the
KPROBE_FLAG_GONE flag.
In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_pci: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, beside, runtime PM also needs be disabled.