Potential race conditions in IndexedDB could have caused memory corruption, leading to a potentially exploitable crash. This vulnerability affects Firefox < 132 and Thunderbird < 132.
A permission leak could have occurred from a trusted site to an untrusted site via `embed` or `object` elements. This vulnerability affects Firefox < 132, Firefox ESR < 128.4, Firefox ESR < 115.17, Thunderbird < 128.4, and Thunderbird < 132.
An attacker could have caused a use-after-free when accessibility was enabled, leading to a potentially exploitable crash. This vulnerability affects Firefox < 132, Firefox ESR < 128.4, Firefox ESR < 115.17, Thunderbird < 128.4, and Thunderbird < 132.
The origin of an external protocol handler prompt could have been obscured using a data: URL within an `iframe`. This vulnerability affects Firefox < 132, Firefox ESR < 128.4, Thunderbird < 128.4, and Thunderbird < 132.
In multipart/x-mixed-replace responses, `Content-Disposition: attachment` in the response header was not respected and did not force a download, which could allow XSS attacks. This vulnerability affects Firefox < 132, Firefox ESR < 128.4, Thunderbird < 128.4, and Thunderbird < 132.
Truncation of a long URL could have allowed origin spoofing in a permission prompt. This vulnerability affects Firefox < 132, Firefox ESR < 128.4, Thunderbird < 128.4, and Thunderbird < 132.
Opening an external link to an HTTP website when Firefox iOS was previously closed and had an HTTPS tab open could in some cases result in the padlock icon showing an HTTPS indicator incorrectly This vulnerability affects Firefox for iOS < 131.2.
When manipulating the selection node cache, an attacker may have been able to cause unexpected behavior, potentially leading to an exploitable crash. This vulnerability affects Firefox < 131.0.3.
The HTTP/2 protocol does not consider the role of the TCP congestion window in providing information about content length, which makes it easier for remote attackers to obtain cleartext data by leveraging a web-browser configuration in which third-party cookies are sent, aka a "HEIST" attack.
The HTTPS protocol does not consider the role of the TCP congestion window in providing information about content length, which makes it easier for remote attackers to obtain cleartext data by leveraging a web-browser configuration in which third-party cookies are sent, aka a "HEIST" attack.