Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 2.6.25.2  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: USB: gadget: Fix use-after-free Read in usb_udc_uevent() The syzbot fuzzer found a race between uevent callbacks and gadget driver unregistration that can cause a use-after-free bug: --------------------------------------------------------------- BUG: KASAN: use-after-free in usb_udc_uevent+0x11f/0x130 drivers/usb/gadget/udc/core.c:1732 Read of size 8 at addr ffff888078ce2050 by task udevd/2968 CPU: 1 PID: 2968 Comm: udevd Not tainted 5.19.0-rc4-next-20220628-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/29/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:317 [inline] print_report.cold+0x2ba/0x719 mm/kasan/report.c:433 kasan_report+0xbe/0x1f0 mm/kasan/report.c:495 usb_udc_uevent+0x11f/0x130 drivers/usb/gadget/udc/core.c:1732 dev_uevent+0x290/0x770 drivers/base/core.c:2424 --------------------------------------------------------------- The bug occurs because usb_udc_uevent() dereferences udc->driver but does so without acquiring the udc_lock mutex, which protects this field. If the gadget driver is unbound from the udc concurrently with uevent processing, the driver structure may be accessed after it has been deallocated. To prevent the race, we make sure that the routine holds the mutex around the racing accesses.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: HID: hidraw: fix memory leak in hidraw_release() Free the buffered reports before deleting the list entry. BUG: memory leak unreferenced object 0xffff88810e72f180 (size 32): comm "softirq", pid 0, jiffies 4294945143 (age 16.080s) hex dump (first 32 bytes): 64 f3 c6 6a d1 88 07 04 00 00 00 00 00 00 00 00 d..j............ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff814ac6c3>] kmemdup+0x23/0x50 mm/util.c:128 [<ffffffff8357c1d2>] kmemdup include/linux/fortify-string.h:440 [inline] [<ffffffff8357c1d2>] hidraw_report_event+0xa2/0x150 drivers/hid/hidraw.c:521 [<ffffffff8356ddad>] hid_report_raw_event+0x27d/0x740 drivers/hid/hid-core.c:1992 [<ffffffff8356e41e>] hid_input_report+0x1ae/0x270 drivers/hid/hid-core.c:2065 [<ffffffff835f0d3f>] hid_irq_in+0x1ff/0x250 drivers/hid/usbhid/hid-core.c:284 [<ffffffff82d3c7f9>] __usb_hcd_giveback_urb+0xf9/0x230 drivers/usb/core/hcd.c:1670 [<ffffffff82d3cc26>] usb_hcd_giveback_urb+0x1b6/0x1d0 drivers/usb/core/hcd.c:1747 [<ffffffff82ef1e14>] dummy_timer+0x8e4/0x14c0 drivers/usb/gadget/udc/dummy_hcd.c:1988 [<ffffffff812f50a8>] call_timer_fn+0x38/0x200 kernel/time/timer.c:1474 [<ffffffff812f5586>] expire_timers kernel/time/timer.c:1519 [inline] [<ffffffff812f5586>] __run_timers.part.0+0x316/0x430 kernel/time/timer.c:1790 [<ffffffff812f56e4>] __run_timers kernel/time/timer.c:1768 [inline] [<ffffffff812f56e4>] run_timer_softirq+0x44/0x90 kernel/time/timer.c:1803 [<ffffffff848000e6>] __do_softirq+0xe6/0x2ea kernel/softirq.c:571 [<ffffffff81246db0>] invoke_softirq kernel/softirq.c:445 [inline] [<ffffffff81246db0>] __irq_exit_rcu kernel/softirq.c:650 [inline] [<ffffffff81246db0>] irq_exit_rcu+0xc0/0x110 kernel/softirq.c:662 [<ffffffff84574f02>] sysvec_apic_timer_interrupt+0xa2/0xd0 arch/x86/kernel/apic/apic.c:1106 [<ffffffff84600c8b>] asm_sysvec_apic_timer_interrupt+0x1b/0x20 arch/x86/include/asm/idtentry.h:649 [<ffffffff8458a070>] native_safe_halt arch/x86/include/asm/irqflags.h:51 [inline] [<ffffffff8458a070>] arch_safe_halt arch/x86/include/asm/irqflags.h:89 [inline] [<ffffffff8458a070>] acpi_safe_halt drivers/acpi/processor_idle.c:111 [inline] [<ffffffff8458a070>] acpi_idle_do_entry+0xc0/0xd0 drivers/acpi/processor_idle.c:554
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: media: pvrusb2: fix memory leak in pvr_probe The error handling code in pvr2_hdw_create forgets to unregister the v4l2 device. When pvr2_hdw_create returns back to pvr2_context_create, it calls pvr2_context_destroy to destroy context, but mp->hdw is NULL, which leads to that pvr2_hdw_destroy directly returns. Fix this by adding v4l2_device_unregister to decrease the refcount of usb interface.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: bpf: Don't redirect packets with invalid pkt_len Syzbot found an issue [1]: fq_codel_drop() try to drop a flow whitout any skbs, that is, the flow->head is null. The root cause, as the [2] says, is because that bpf_prog_test_run_skb() run a bpf prog which redirects empty skbs. So we should determine whether the length of the packet modified by bpf prog or others like bpf_prog_test is valid before forwarding it directly.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: vt: Clear selection before changing the font When changing the console font with ioctl(KDFONTOP) the new font size can be bigger than the previous font. A previous selection may thus now be outside of the new screen size and thus trigger out-of-bounds accesses to graphics memory if the selection is removed in vc_do_resize(). Prevent such out-of-memory accesses by dropping the selection before the various con_font_set() console handlers are called.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: USB: core: Prevent nested device-reset calls Automatic kernel fuzzing revealed a recursive locking violation in usb-storage: ============================================ WARNING: possible recursive locking detected 5.18.0 #3 Not tainted -------------------------------------------- kworker/1:3/1205 is trying to acquire lock: ffff888018638db8 (&us_interface_key[i]){+.+.}-{3:3}, at: usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230 but task is already holding lock: ffff888018638db8 (&us_interface_key[i]){+.+.}-{3:3}, at: usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230 ... stack backtrace: CPU: 1 PID: 1205 Comm: kworker/1:3 Not tainted 5.18.0 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_deadlock_bug kernel/locking/lockdep.c:2988 [inline] check_deadlock kernel/locking/lockdep.c:3031 [inline] validate_chain kernel/locking/lockdep.c:3816 [inline] __lock_acquire.cold+0x152/0x3ca kernel/locking/lockdep.c:5053 lock_acquire kernel/locking/lockdep.c:5665 [inline] lock_acquire+0x1ab/0x520 kernel/locking/lockdep.c:5630 __mutex_lock_common kernel/locking/mutex.c:603 [inline] __mutex_lock+0x14f/0x1610 kernel/locking/mutex.c:747 usb_stor_pre_reset+0x35/0x40 drivers/usb/storage/usb.c:230 usb_reset_device+0x37d/0x9a0 drivers/usb/core/hub.c:6109 r871xu_dev_remove+0x21a/0x270 drivers/staging/rtl8712/usb_intf.c:622 usb_unbind_interface+0x1bd/0x890 drivers/usb/core/driver.c:458 device_remove drivers/base/dd.c:545 [inline] device_remove+0x11f/0x170 drivers/base/dd.c:537 __device_release_driver drivers/base/dd.c:1222 [inline] device_release_driver_internal+0x1a7/0x2f0 drivers/base/dd.c:1248 usb_driver_release_interface+0x102/0x180 drivers/usb/core/driver.c:627 usb_forced_unbind_intf+0x4d/0xa0 drivers/usb/core/driver.c:1118 usb_reset_device+0x39b/0x9a0 drivers/usb/core/hub.c:6114 This turned out not to be an error in usb-storage but rather a nested device reset attempt. That is, as the rtl8712 driver was being unbound from a composite device in preparation for an unrelated USB reset (that driver does not have pre_reset or post_reset callbacks), its ->remove routine called usb_reset_device() -- thus nesting one reset call within another. Performing a reset as part of disconnect processing is a questionable practice at best. However, the bug report points out that the USB core does not have any protection against nested resets. Adding a reset_in_progress flag and testing it will prevent such errors in the future.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: media: mceusb: Use new usb_control_msg_*() routines Automatic kernel fuzzing led to a WARN about invalid pipe direction in the mceusb driver: ------------[ cut here ]------------ usb 6-1: BOGUS control dir, pipe 80000380 doesn't match bRequestType 40 WARNING: CPU: 0 PID: 2465 at drivers/usb/core/urb.c:410 usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410 Modules linked in: CPU: 0 PID: 2465 Comm: kworker/0:2 Not tainted 5.19.0-rc4-00208-g69cb6c6556ad #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0x1326/0x1820 drivers/usb/core/urb.c:410 Code: 7c 24 40 e8 ac 23 91 fd 48 8b 7c 24 40 e8 b2 70 1b ff 45 89 e8 44 89 f1 4c 89 e2 48 89 c6 48 c7 c7 a0 30 a9 86 e8 48 07 11 02 <0f> 0b e9 1c f0 ff ff e8 7e 23 91 fd 0f b6 1d 63 22 83 05 31 ff 41 RSP: 0018:ffffc900032becf0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff8881100f3058 RCX: 0000000000000000 RDX: ffffc90004961000 RSI: ffff888114c6d580 RDI: fffff52000657d90 RBP: ffff888105ad90f0 R08: ffffffff812c3638 R09: 0000000000000000 R10: 0000000000000005 R11: ffffed1023504ef1 R12: ffff888105ad9000 R13: 0000000000000040 R14: 0000000080000380 R15: ffff88810ba96500 FS: 0000000000000000(0000) GS:ffff88811a800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffe810bda58 CR3: 000000010b720000 CR4: 0000000000350ef0 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4c0 drivers/usb/core/message.c:58 usb_internal_control_msg drivers/usb/core/message.c:102 [inline] usb_control_msg+0x31c/0x4a0 drivers/usb/core/message.c:153 mceusb_gen1_init drivers/media/rc/mceusb.c:1431 [inline] mceusb_dev_probe+0x258e/0x33f0 drivers/media/rc/mceusb.c:1807 The reason for the warning is clear enough; the driver sends an unusual read request on endpoint 0 but does not set the USB_DIR_IN bit in the bRequestType field. More importantly, the whole situation can be avoided and the driver simplified by converting it over to the relatively new usb_control_msg_recv() and usb_control_msg_send() routines. That's what this fix does.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: cifs: fix small mempool leak in SMB2_negotiate() In some cases of failure (dialect mismatches) in SMB2_negotiate(), after the request is sent, the checks would return -EIO when they should be rather setting rc = -EIO and jumping to neg_exit to free the response buffer from mempool.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: binder: fix UAF of ref->proc caused by race condition A transaction of type BINDER_TYPE_WEAK_HANDLE can fail to increment the reference for a node. In this case, the target proc normally releases the failed reference upon close as expected. However, if the target is dying in parallel the call will race with binder_deferred_release(), so the target could have released all of its references by now leaving the cleanup of the new failed reference unhandled. The transaction then ends and the target proc gets released making the ref->proc now a dangling pointer. Later on, ref->node is closed and we attempt to take spin_lock(&ref->proc->inner_lock), which leads to the use-after-free bug reported below. Let's fix this by cleaning up the failed reference on the spot instead of relying on the target to do so. ================================================================== BUG: KASAN: use-after-free in _raw_spin_lock+0xa8/0x150 Write of size 4 at addr ffff5ca207094238 by task kworker/1:0/590 CPU: 1 PID: 590 Comm: kworker/1:0 Not tainted 5.19.0-rc8 #10 Hardware name: linux,dummy-virt (DT) Workqueue: events binder_deferred_func Call trace: dump_backtrace.part.0+0x1d0/0x1e0 show_stack+0x18/0x70 dump_stack_lvl+0x68/0x84 print_report+0x2e4/0x61c kasan_report+0xa4/0x110 kasan_check_range+0xfc/0x1a4 __kasan_check_write+0x3c/0x50 _raw_spin_lock+0xa8/0x150 binder_deferred_func+0x5e0/0x9b0 process_one_work+0x38c/0x5f0 worker_thread+0x9c/0x694 kthread+0x188/0x190 ret_from_fork+0x10/0x20
CVSS Score
7.0
EPSS Score
0.0
Published
2025-06-18
In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix race of buffer access at PCM OSS layer The PCM OSS layer tries to clear the buffer with the silence data at initialization (or reconfiguration) of a stream with the explicit call of snd_pcm_format_set_silence() with runtime->dma_area. But this may lead to a UAF because the accessed runtime->dma_area might be freed concurrently, as it's performed outside the PCM ops. For avoiding it, move the code into the PCM core and perform it inside the buffer access lock, so that it won't be changed during the operation.
CVSS Score
4.7
EPSS Score
0.0
Published
2025-06-18


Contact Us

Shodan ® - All rights reserved