In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix memory leaks in __check_func_call
kmemleak reports this issue:
unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.
In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().
In the Linux kernel, the following vulnerability has been resolved:
scsi: scsi_transport_sas: Fix error handling in sas_phy_add()
If transport_add_device() fails in sas_phy_add(), the kernel will crash
trying to delete the device in transport_remove_device() called from
sas_remove_host().
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108
CPU: 61 PID: 42829 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc1+ #173
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x54/0x3d0
lr : device_del+0x37c/0x3d0
Call trace:
device_del+0x54/0x3d0
attribute_container_class_device_del+0x28/0x38
transport_remove_classdev+0x6c/0x80
attribute_container_device_trigger+0x108/0x110
transport_remove_device+0x28/0x38
sas_phy_delete+0x30/0x60 [scsi_transport_sas]
do_sas_phy_delete+0x6c/0x80 [scsi_transport_sas]
device_for_each_child+0x68/0xb0
sas_remove_children+0x40/0x50 [scsi_transport_sas]
sas_remove_host+0x20/0x38 [scsi_transport_sas]
hisi_sas_remove+0x40/0x68 [hisi_sas_main]
hisi_sas_v2_remove+0x20/0x30 [hisi_sas_v2_hw]
platform_remove+0x2c/0x60
Fix this by checking and handling return value of transport_add_device()
in sas_phy_add().
In the Linux kernel, the following vulnerability has been resolved:
bpf, test_run: Fix alignment problem in bpf_prog_test_run_skb()
We got a syzkaller problem because of aarch64 alignment fault
if KFENCE enabled. When the size from user bpf program is an odd
number, like 399, 407, etc, it will cause the struct skb_shared_info's
unaligned access. As seen below:
BUG: KFENCE: use-after-free read in __skb_clone+0x23c/0x2a0 net/core/skbuff.c:1032
Use-after-free read at 0xffff6254fffac077 (in kfence-#213):
__lse_atomic_add arch/arm64/include/asm/atomic_lse.h:26 [inline]
arch_atomic_add arch/arm64/include/asm/atomic.h:28 [inline]
arch_atomic_inc include/linux/atomic-arch-fallback.h:270 [inline]
atomic_inc include/asm-generic/atomic-instrumented.h:241 [inline]
__skb_clone+0x23c/0x2a0 net/core/skbuff.c:1032
skb_clone+0xf4/0x214 net/core/skbuff.c:1481
____bpf_clone_redirect net/core/filter.c:2433 [inline]
bpf_clone_redirect+0x78/0x1c0 net/core/filter.c:2420
bpf_prog_d3839dd9068ceb51+0x80/0x330
bpf_dispatcher_nop_func include/linux/bpf.h:728 [inline]
bpf_test_run+0x3c0/0x6c0 net/bpf/test_run.c:53
bpf_prog_test_run_skb+0x638/0xa7c net/bpf/test_run.c:594
bpf_prog_test_run kernel/bpf/syscall.c:3148 [inline]
__do_sys_bpf kernel/bpf/syscall.c:4441 [inline]
__se_sys_bpf+0xad0/0x1634 kernel/bpf/syscall.c:4381
kfence-#213: 0xffff6254fffac000-0xffff6254fffac196, size=407, cache=kmalloc-512
allocated by task 15074 on cpu 0 at 1342.585390s:
kmalloc include/linux/slab.h:568 [inline]
kzalloc include/linux/slab.h:675 [inline]
bpf_test_init.isra.0+0xac/0x290 net/bpf/test_run.c:191
bpf_prog_test_run_skb+0x11c/0xa7c net/bpf/test_run.c:512
bpf_prog_test_run kernel/bpf/syscall.c:3148 [inline]
__do_sys_bpf kernel/bpf/syscall.c:4441 [inline]
__se_sys_bpf+0xad0/0x1634 kernel/bpf/syscall.c:4381
__arm64_sys_bpf+0x50/0x60 kernel/bpf/syscall.c:4381
To fix the problem, we adjust @size so that (@size + @hearoom) is a
multiple of SMP_CACHE_BYTES. So we make sure the struct skb_shared_info
is aligned to a cache line.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: core: Fix use-after-free in snd_soc_exit()
KASAN reports a use-after-free:
BUG: KASAN: use-after-free in device_del+0xb5b/0xc60
Read of size 8 at addr ffff888008655050 by task rmmod/387
CPU: 2 PID: 387 Comm: rmmod
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<TASK>
dump_stack_lvl+0x79/0x9a
print_report+0x17f/0x47b
kasan_report+0xbb/0xf0
device_del+0xb5b/0xc60
platform_device_del.part.0+0x24/0x200
platform_device_unregister+0x2e/0x40
snd_soc_exit+0xa/0x22 [snd_soc_core]
__do_sys_delete_module.constprop.0+0x34f/0x5b0
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
...
</TASK>
It's bacause in snd_soc_init(), snd_soc_util_init() is possble to fail,
but its ret is ignored, which makes soc_dummy_dev unregistered twice.
snd_soc_init()
snd_soc_util_init()
platform_device_register_simple(soc_dummy_dev)
platform_driver_register() # fail
platform_device_unregister(soc_dummy_dev)
platform_driver_register() # success
...
snd_soc_exit()
snd_soc_util_exit()
# soc_dummy_dev will be unregistered for second time
To fix it, handle error and stop snd_soc_init() when util_init() fail.
Also clean debugfs when util_init() or driver_register() fail.
In the Linux kernel, the following vulnerability has been resolved:
can: dev: fix skb drop check
In commit a6d190f8c767 ("can: skb: drop tx skb if in listen only
mode") the priv->ctrlmode element is read even on virtual CAN
interfaces that do not create the struct can_priv at startup. This
out-of-bounds read may lead to CAN frame drops for virtual CAN
interfaces like vcan and vxcan.
This patch mainly reverts the original commit and adds a new helper
for CAN interface drivers that provide the required information in
struct can_priv.
[mkl: patch pch_can, too]
The WordPress Simple Shopping Cart plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 5.1.3 due to lack of randomization of a user controlled key. This makes it possible for unauthenticated attackers to access customer shopping carts and edit product links, add or delete products, and discover coupon codes.
The WordPress Simple Shopping Cart plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 5.1.3 via the 'process_payment_data' due to missing validation on a user controlled key. This makes it possible for unauthenticated attackers to change the quantity of a product to a negative number, which subtracts the product cost from the total order cost. The attack will only work with Manual Checkout mode, as PayPal and Stripe will not process payments for a negative quantity.
The WordPress Simple Shopping Cart plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's 'wp_cart_button' shortcode in all versions up to, and including, 5.1.3 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
A vulnerability was found in PHPGurukul Boat Booking System 1.0 and classified as critical. This issue affects some unknown processing of the file /admin/booking-details.php. The manipulation of the argument Status leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as critical, was found in PHPGurukul Boat Booking System 1.0. This affects an unknown part of the file /admin/edit-boat.php. The manipulation of the argument bid leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.