Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 2.0.33  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: net: inet: do not leave a dangling sk pointer in inet_create() sock_init_data() attaches the allocated sk object to the provided sock object. If inet_create() fails later, the sk object is freed, but the sock object retains the dangling pointer, which may create use-after-free later. Clear the sk pointer in the sock object on error.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: net: ieee802154: do not leave a dangling sk pointer in ieee802154_create() sock_init_data() attaches the allocated sk object to the provided sock object. If ieee802154_create() fails later, the allocated sk object is freed, but the dangling pointer remains in the provided sock object, which may allow use-after-free. Clear the sk pointer in the sock object on error.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: net: af_can: do not leave a dangling sk pointer in can_create() On error can_create() frees the allocated sk object, but sock_init_data() has already attached it to the provided sock object. This will leave a dangling sk pointer in the sock object and may cause use-after-free later.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc() bt_sock_alloc() attaches allocated sk object to the provided sock object. If rfcomm_dlc_alloc() fails, we release the sk object, but leave the dangling pointer in the sock object, which may cause use-after-free. Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc().
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create() bt_sock_alloc() allocates the sk object and attaches it to the provided sock object. On error l2cap_sock_alloc() frees the sk object, but the dangling pointer is still attached to the sock object, which may create use-after-free in other code.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Create all dump files during debugfs initialization For the current debugfs of hisi_sas, after user triggers dump, the driver allocate memory space to save the register information and create debugfs files to display the saved information. In this process, the debugfs files created after each dump. Therefore, when the dump is triggered while the driver is unbind, the following hang occurs: [67840.853907] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0 [67840.862947] Mem abort info: [67840.865855] ESR = 0x0000000096000004 [67840.869713] EC = 0x25: DABT (current EL), IL = 32 bits [67840.875125] SET = 0, FnV = 0 [67840.878291] EA = 0, S1PTW = 0 [67840.881545] FSC = 0x04: level 0 translation fault [67840.886528] Data abort info: [67840.889524] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [67840.895117] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [67840.900284] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [67840.905709] user pgtable: 4k pages, 48-bit VAs, pgdp=0000002803a1f000 [67840.912263] [00000000000000a0] pgd=0000000000000000, p4d=0000000000000000 [67840.919177] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [67840.996435] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [67841.003628] pc : down_write+0x30/0x98 [67841.007546] lr : start_creating.part.0+0x60/0x198 [67841.012495] sp : ffff8000b979ba20 [67841.016046] x29: ffff8000b979ba20 x28: 0000000000000010 x27: 0000000000024b40 [67841.023412] x26: 0000000000000012 x25: ffff20202b355ae8 x24: ffff20202b35a8c8 [67841.030779] x23: ffffa36877928208 x22: ffffa368b4972240 x21: ffff8000b979bb18 [67841.038147] x20: ffff00281dc1e3c0 x19: fffffffffffffffe x18: 0000000000000020 [67841.045515] x17: 0000000000000000 x16: ffffa368b128a530 x15: ffffffffffffffff [67841.052888] x14: ffff8000b979bc18 x13: ffffffffffffffff x12: ffff8000b979bb18 [67841.060263] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffa368b1289b18 [67841.067640] x8 : 0000000000000012 x7 : 0000000000000000 x6 : 00000000000003a9 [67841.075014] x5 : 0000000000000000 x4 : ffff002818c5cb00 x3 : 0000000000000001 [67841.082388] x2 : 0000000000000000 x1 : ffff002818c5cb00 x0 : 00000000000000a0 [67841.089759] Call trace: [67841.092456] down_write+0x30/0x98 [67841.096017] start_creating.part.0+0x60/0x198 [67841.100613] debugfs_create_dir+0x48/0x1f8 [67841.104950] debugfs_create_files_v3_hw+0x88/0x348 [hisi_sas_v3_hw] [67841.111447] debugfs_snapshot_regs_v3_hw+0x708/0x798 [hisi_sas_v3_hw] [67841.118111] debugfs_trigger_dump_v3_hw_write+0x9c/0x120 [hisi_sas_v3_hw] [67841.125115] full_proxy_write+0x68/0xc8 [67841.129175] vfs_write+0xd8/0x3f0 [67841.132708] ksys_write+0x70/0x108 [67841.136317] __arm64_sys_write+0x24/0x38 [67841.140440] invoke_syscall+0x50/0x128 [67841.144385] el0_svc_common.constprop.0+0xc8/0xf0 [67841.149273] do_el0_svc+0x24/0x38 [67841.152773] el0_svc+0x38/0xd8 [67841.156009] el0t_64_sync_handler+0xc0/0xc8 [67841.160361] el0t_64_sync+0x1a4/0x1a8 [67841.164189] Code: b9000882 d2800002 d2800023 f9800011 (c85ffc05) [67841.170443] ---[ end trace 0000000000000000 ]--- To fix this issue, create all directories and files during debugfs initialization. In this way, the driver only needs to allocate memory space to save information each time the user triggers dumping.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix oops due to NULL pointer dereference in brcmf_sdiod_sglist_rw() This patch fixes a NULL pointer dereference bug in brcmfmac that occurs when a high 'sd_sgentry_align' value applies (e.g. 512) and a lot of queued SKBs are sent from the pkt queue. The problem is the number of entries in the pre-allocated sgtable, it is nents = max(rxglom_size, txglom_size) + max(rxglom_size, txglom_size) >> 4 + 1. Given the default [rt]xglom_size=32 it's actually 35 which is too small. Worst case, the pkt queue can end up with 64 SKBs. This occurs when a new SKB is added for each original SKB if tailroom isn't enough to hold tail_pad. At least one sg entry is needed for each SKB. So, eventually the "skb_queue_walk loop" in brcmf_sdiod_sglist_rw may run out of sg entries. This makes sg_next return NULL and this causes the oops. The patch sets nents to max(rxglom_size, txglom_size) * 2 to be able handle the worst-case. Btw. this requires only 64-35=29 * 16 (or 20 if CONFIG_NEED_SG_DMA_LENGTH) = 464 additional bytes of memory.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: jfs: add a check to prevent array-index-out-of-bounds in dbAdjTree When the value of lp is 0 at the beginning of the for loop, it will become negative in the next assignment and we should bail out.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in jfs_readdir The stbl might contain some invalid values. Added a check to return error code in that case.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: leds: class: Protect brightness_show() with led_cdev->led_access mutex There is NULL pointer issue observed if from Process A where hid device being added which results in adding a led_cdev addition and later a another call to access of led_cdev attribute from Process B can result in NULL pointer issue. Use mutex led_cdev->led_access to protect access to led->cdev and its attribute inside brightness_show() and max_brightness_show() and also update the comment for mutex that it should be used to protect the led class device fields. Process A Process B kthread+0x114 worker_thread+0x244 process_scheduled_works+0x248 uhid_device_add_worker+0x24 hid_add_device+0x120 device_add+0x268 bus_probe_device+0x94 device_initial_probe+0x14 __device_attach+0xfc bus_for_each_drv+0x10c __device_attach_driver+0x14c driver_probe_device+0x3c __driver_probe_device+0xa0 really_probe+0x190 hid_device_probe+0x130 ps_probe+0x990 ps_led_register+0x94 devm_led_classdev_register_ext+0x58 led_classdev_register_ext+0x1f8 device_create_with_groups+0x48 device_create_groups_vargs+0xc8 device_add+0x244 kobject_uevent+0x14 kobject_uevent_env[jt]+0x224 mutex_unlock[jt]+0xc4 __mutex_unlock_slowpath+0xd4 wake_up_q+0x70 try_to_wake_up[jt]+0x48c preempt_schedule_common+0x28 __schedule+0x628 __switch_to+0x174 el0t_64_sync+0x1a8/0x1ac el0t_64_sync_handler+0x68/0xbc el0_svc+0x38/0x68 do_el0_svc+0x1c/0x28 el0_svc_common+0x80/0xe0 invoke_syscall+0x58/0x114 __arm64_sys_read+0x1c/0x2c ksys_read+0x78/0xe8 vfs_read+0x1e0/0x2c8 kernfs_fop_read_iter+0x68/0x1b4 seq_read_iter+0x158/0x4ec kernfs_seq_show+0x44/0x54 sysfs_kf_seq_show+0xb4/0x130 dev_attr_show+0x38/0x74 brightness_show+0x20/0x4c dualshock4_led_get_brightness+0xc/0x74 [ 3313.874295][ T4013] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000060 [ 3313.874301][ T4013] Mem abort info: [ 3313.874303][ T4013] ESR = 0x0000000096000006 [ 3313.874305][ T4013] EC = 0x25: DABT (current EL), IL = 32 bits [ 3313.874307][ T4013] SET = 0, FnV = 0 [ 3313.874309][ T4013] EA = 0, S1PTW = 0 [ 3313.874311][ T4013] FSC = 0x06: level 2 translation fault [ 3313.874313][ T4013] Data abort info: [ 3313.874314][ T4013] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000 [ 3313.874316][ T4013] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 3313.874318][ T4013] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 3313.874320][ T4013] user pgtable: 4k pages, 39-bit VAs, pgdp=00000008f2b0a000 .. [ 3313.874332][ T4013] Dumping ftrace buffer: [ 3313.874334][ T4013] (ftrace buffer empty) .. .. [ dd3313.874639][ T4013] CPU: 6 PID: 4013 Comm: InputReader [ 3313.874648][ T4013] pc : dualshock4_led_get_brightness+0xc/0x74 [ 3313.874653][ T4013] lr : led_update_brightness+0x38/0x60 [ 3313.874656][ T4013] sp : ffffffc0b910bbd0 .. .. [ 3313.874685][ T4013] Call trace: [ 3313.874687][ T4013] dualshock4_led_get_brightness+0xc/0x74 [ 3313.874690][ T4013] brightness_show+0x20/0x4c [ 3313.874692][ T4013] dev_attr_show+0x38/0x74 [ 3313.874696][ T4013] sysfs_kf_seq_show+0xb4/0x130 [ 3313.874700][ T4013] kernfs_seq_show+0x44/0x54 [ 3313.874703][ T4013] seq_read_iter+0x158/0x4ec [ 3313.874705][ T4013] kernfs_fop_read_iter+0x68/0x1b4 [ 3313.874708][ T4013] vfs_read+0x1e0/0x2c8 [ 3313.874711][ T4013] ksys_read+0x78/0xe8 [ 3313.874714][ T4013] __arm64_sys_read+0x1c/0x2c [ 3313.874718][ T4013] invoke_syscall+0x58/0x114 [ 3313.874721][ T4013] el0_svc_common+0x80/0xe0 [ 3313.874724][ T4013] do_el0_svc+0x1c/0x28 [ 3313.874727][ T4013] el0_svc+0x38/0x68 [ 3313.874730][ T4013] el0t_64_sync_handler+0x68/0xbc [ 3313.874732][ T4013] el0t_64_sync+0x1a8/0x1ac
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27


Contact Us

Shodan ® - All rights reserved