In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix memory leak when using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. Fix this up by properly
calling dput().
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix an out-of-bounds bug in __snd_usb_parse_audio_interface()
There may be a bad USB audio device with a USB ID of (0x04fa, 0x4201) and
the number of it's interfaces less than 4, an out-of-bounds read bug occurs
when parsing the interface descriptor for this device.
Fix this by checking the number of interfaces.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: emu10k1: Fix out of bounds access in snd_emu10k1_pcm_channel_alloc()
The voice allocator sometimes begins allocating from near the end of the
array and then wraps around, however snd_emu10k1_pcm_channel_alloc()
accesses the newly allocated voices as if it never wrapped around.
This results in out of bounds access if the first voice has a high enough
index so that first_voice + requested_voice_count > NUM_G (64).
The more voices are requested, the more likely it is for this to occur.
This was initially discovered using PipeWire, however it can be reproduced
by calling aplay multiple times with 16 channels:
aplay -r 48000 -D plughw:CARD=Live,DEV=3 -c 16 /dev/zero
UBSAN: array-index-out-of-bounds in sound/pci/emu10k1/emupcm.c:127:40
index 65 is out of range for type 'snd_emu10k1_voice [64]'
CPU: 1 PID: 31977 Comm: aplay Tainted: G W IOE 6.0.0-rc2-emu10k1+ #7
Hardware name: ASUSTEK COMPUTER INC P5W DH Deluxe/P5W DH Deluxe, BIOS 3002 07/22/2010
Call Trace:
<TASK>
dump_stack_lvl+0x49/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x3f
__ubsan_handle_out_of_bounds.cold+0x44/0x49
snd_emu10k1_playback_hw_params+0x3bc/0x420 [snd_emu10k1]
snd_pcm_hw_params+0x29f/0x600 [snd_pcm]
snd_pcm_common_ioctl+0x188/0x1410 [snd_pcm]
? exit_to_user_mode_prepare+0x35/0x170
? do_syscall_64+0x69/0x90
? syscall_exit_to_user_mode+0x26/0x50
? do_syscall_64+0x69/0x90
? exit_to_user_mode_prepare+0x35/0x170
snd_pcm_ioctl+0x27/0x40 [snd_pcm]
__x64_sys_ioctl+0x95/0xd0
do_syscall_64+0x5c/0x90
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved:
thermal/int340x_thermal: handle data_vault when the value is ZERO_SIZE_PTR
In some case, the GDDV returns a package with a buffer which has
zero length. It causes that kmemdup() returns ZERO_SIZE_PTR (0x10).
Then the data_vault_read() got NULL point dereference problem when
accessing the 0x10 value in data_vault.
[ 71.024560] BUG: kernel NULL pointer dereference, address:
0000000000000010
This patch uses ZERO_OR_NULL_PTR() for checking ZERO_SIZE_PTR or
NULL value in data_vault.
In the Linux kernel, the following vulnerability has been resolved:
media: ttpci: fix two memleaks in budget_av_attach
When saa7146_register_device and saa7146_vv_init fails, budget_av_attach
should free the resources it allocates, like the error-handling of
ttpci_budget_init does. Besides, there are two fixme comment refers to
such deallocations.
In the Linux kernel, the following vulnerability has been resolved:
media: go7007: fix a memleak in go7007_load_encoder
In go7007_load_encoder, bounce(i.e. go->boot_fw), is allocated without
a deallocation thereafter. After the following call chain:
saa7134_go7007_init
|-> go7007_boot_encoder
|-> go7007_load_encoder
|-> kfree(go)
go is freed and thus bounce is leaked.
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix some memleaks in gssx_dec_option_array
The creds and oa->data need to be freed in the error-handling paths after
their allocation. So this patch add these deallocations in the
corresponding paths.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: ensure offloading TID queue exists
The resume code path assumes that the TX queue for the offloading TID
has been configured. At resume time it then tries to sync the write
pointer as it may have been updated by the firmware.
In the unusual event that no packets have been send on TID 0, the queue
will not have been allocated and this causes a crash. Fix this by
ensuring the queue exist at suspend time.
In the Linux kernel, the following vulnerability has been resolved:
USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command
The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values
in the ATA ID information to calculate cylinder and head values when
creating a CDB for READ or WRITE commands. The calculation involves
division and modulus operations, which will cause a crash if either of
these values is 0. While this never happens with a genuine device, it
could happen with a flawed or subversive emulation, as reported by the
syzbot fuzzer.
Protect against this possibility by refusing to bind to the device if
either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID
information is 0. This requires isd200_Initialization() to return a
negative error code when initialization fails; currently it always
returns 0 (even when there is an error).