In the Linux kernel, the following vulnerability has been resolved:
net: wwan: iosm: fix memory leak in ipc_pcie_read_bios_cfg
ipc_pcie_read_bios_cfg() is using the acpi_evaluate_dsm() to
obtain the wwan power state configuration from BIOS but is
not freeing the acpi_object. The acpi_evaluate_dsm() returned
acpi_object to be freed.
Free the acpi_object after use.
In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix memory leak in prestera_rxtx_switch_init()
When prestera_sdma_switch_init() failed, the memory pointed to by
sw->rxtx isn't released. Fix it. Only be compiled, not be tested.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma-glue: fix memory leak when register device fail
If device_register() fails, it should call put_device() to give
up reference, the name allocated in dev_set_name() can be freed
in callback function kobject_cleanup().
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: mv_xor_v2: Fix a resource leak in mv_xor_v2_remove()
A clk_prepare_enable() call in the probe is not balanced by a corresponding
clk_disable_unprepare() in the remove function.
Add the missing call.
In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_send_one(): fix missing CAN header initialization
The read access to struct canxl_frame::len inside of a j1939 created
skbuff revealed a missing initialization of reserved and later filled
elements in struct can_frame.
This patch initializes the 8 byte CAN header with zero.
In the Linux kernel, the following vulnerability has been resolved:
phy: qcom-qmp-combo: fix NULL-deref on runtime resume
Commit fc64623637da ("phy: qcom-qmp-combo,usb: add support for separate
PCS_USB region") started treating the PCS_USB registers as potentially
separate from the PCS registers but used the wrong base when no PCS_USB
offset has been provided.
Fix the PCS_USB base used at runtime resume to prevent dereferencing a
NULL pointer on platforms that do not provide a PCS_USB offset (e.g.
SC7180).
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix deadlock in nilfs_count_free_blocks()
A semaphore deadlock can occur if nilfs_get_block() detects metadata
corruption while locating data blocks and a superblock writeback occurs at
the same time:
task 1 task 2
------ ------
* A file operation *
nilfs_truncate()
nilfs_get_block()
down_read(rwsem A) <--
nilfs_bmap_lookup_contig()
... generic_shutdown_super()
nilfs_put_super()
* Prepare to write superblock *
down_write(rwsem B) <--
nilfs_cleanup_super()
* Detect b-tree corruption * nilfs_set_log_cursor()
nilfs_bmap_convert_error() nilfs_count_free_blocks()
__nilfs_error() down_read(rwsem A) <--
nilfs_set_error()
down_write(rwsem B) <--
*** DEADLOCK ***
Here, nilfs_get_block() readlocks rwsem A (= NILFS_MDT(dat_inode)->mi_sem)
and then calls nilfs_bmap_lookup_contig(), but if it fails due to metadata
corruption, __nilfs_error() is called from nilfs_bmap_convert_error()
inside the lock section.
Since __nilfs_error() calls nilfs_set_error() unless the filesystem is
read-only and nilfs_set_error() attempts to writelock rwsem B (=
nilfs->ns_sem) to write back superblock exclusively, hierarchical lock
acquisition occurs in the order rwsem A -> rwsem B.
Now, if another task starts updating the superblock, it may writelock
rwsem B during the lock sequence above, and can deadlock trying to
readlock rwsem A in nilfs_count_free_blocks().
However, there is actually no need to take rwsem A in
nilfs_count_free_blocks() because it, within the lock section, only reads
a single integer data on a shared struct with
nilfs_sufile_get_ncleansegs(). This has been the case after commit
aa474a220180 ("nilfs2: add local variable to cache the number of clean
segments"), that is, even before this bug was introduced.
So, this resolves the deadlock problem by just not taking the semaphore in
nilfs_count_free_blocks().
In the Linux kernel, the following vulnerability has been resolved:
net: macvlan: fix memory leaks of macvlan_common_newlink
kmemleak reports memory leaks in macvlan_common_newlink, as follows:
ip link add link eth0 name .. type macvlan mode source macaddr add
<MAC-ADDR>
kmemleak reports:
unreferenced object 0xffff8880109bb140 (size 64):
comm "ip", pid 284, jiffies 4294986150 (age 430.108s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 b8 aa 5a 12 80 88 ff ff ..........Z.....
80 1b fa 0d 80 88 ff ff 1e ff ac af c7 c1 6b 6b ..............kk
backtrace:
[<ffffffff813e06a7>] kmem_cache_alloc_trace+0x1c7/0x300
[<ffffffff81b66025>] macvlan_hash_add_source+0x45/0xc0
[<ffffffff81b66a67>] macvlan_changelink_sources+0xd7/0x170
[<ffffffff81b6775c>] macvlan_common_newlink+0x38c/0x5a0
[<ffffffff81b6797e>] macvlan_newlink+0xe/0x20
[<ffffffff81d97f8f>] __rtnl_newlink+0x7af/0xa50
[<ffffffff81d98278>] rtnl_newlink+0x48/0x70
...
In the scenario where the macvlan mode is configured as 'source',
macvlan_changelink_sources() will be execured to reconfigure list of
remote source mac addresses, at the same time, if register_netdevice()
return an error, the resource generated by macvlan_changelink_sources()
is not cleaned up.
Using this patch, in the case of an error, it will execute
macvlan_flush_sources() to ensure that the resource is cleaned up.
In the Linux kernel, the following vulnerability has been resolved:
mctp: Fix an error handling path in mctp_init()
If mctp_neigh_init() return error, the routes resources should
be released in the error handling path. Otherwise some resources
leak.