In the Linux kernel, the following vulnerability has been resolved:
cifs: fix handlecache and multiuser
In multiuser each individual user has their own tcon structure for the
share and thus their own handle for a cached directory.
When we umount such a share we much make sure to release the pinned down dentry
for each such tcon and not just the master tcon.
Otherwise we will get nasty warnings on umount that dentries are still in use:
[ 3459.590047] BUG: Dentry 00000000115c6f41{i=12000000019d95,n=/} still in use\
(2) [unmount of cifs cifs]
...
[ 3459.590492] Call Trace:
[ 3459.590500] d_walk+0x61/0x2a0
[ 3459.590518] ? shrink_lock_dentry.part.0+0xe0/0xe0
[ 3459.590526] shrink_dcache_for_umount+0x49/0x110
[ 3459.590535] generic_shutdown_super+0x1a/0x110
[ 3459.590542] kill_anon_super+0x14/0x30
[ 3459.590549] cifs_kill_sb+0xf5/0x104 [cifs]
[ 3459.590773] deactivate_locked_super+0x36/0xa0
[ 3459.590782] cleanup_mnt+0x131/0x190
[ 3459.590789] task_work_run+0x5c/0x90
[ 3459.590798] exit_to_user_mode_loop+0x151/0x160
[ 3459.590809] exit_to_user_mode_prepare+0x83/0xd0
[ 3459.590818] syscall_exit_to_user_mode+0x12/0x30
[ 3459.590828] do_syscall_64+0x48/0x90
[ 3459.590833] entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
exec: Force single empty string when argv is empty
Quoting[1] Ariadne Conill:
"In several other operating systems, it is a hard requirement that the
second argument to execve(2) be the name of a program, thus prohibiting
a scenario where argc < 1. POSIX 2017 also recommends this behaviour,
but it is not an explicit requirement[2]:
The argument arg0 should point to a filename string that is
associated with the process being started by one of the exec
functions.
...
Interestingly, Michael Kerrisk opened an issue about this in 2008[3],
but there was no consensus to support fixing this issue then.
Hopefully now that CVE-2021-4034 shows practical exploitative use[4]
of this bug in a shellcode, we can reconsider.
This issue is being tracked in the KSPP issue tracker[5]."
While the initial code searches[6][7] turned up what appeared to be
mostly corner case tests, trying to that just reject argv == NULL
(or an immediately terminated pointer list) quickly started tripping[8]
existing userspace programs.
The next best approach is forcing a single empty string into argv and
adjusting argc to match. The number of programs depending on argc == 0
seems a smaller set than those calling execve with a NULL argv.
Account for the additional stack space in bprm_stack_limits(). Inject an
empty string when argc == 0 (and set argc = 1). Warn about the case so
userspace has some notice about the change:
process './argc0' launched './argc0' with NULL argv: empty string added
Additionally WARN() and reject NULL argv usage for kernel threads.
[1] https://lore.kernel.org/lkml/20220127000724.15106-1-ariadne@dereferenced.org/
[2] https://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html
[3] https://bugzilla.kernel.org/show_bug.cgi?id=8408
[4] https://www.qualys.com/2022/01/25/cve-2021-4034/pwnkit.txt
[5] https://github.com/KSPP/linux/issues/176
[6] https://codesearch.debian.net/search?q=execve%5C+*%5C%28%5B%5E%2C%5D%2B%2C+*NULL&literal=0
[7] https://codesearch.debian.net/search?q=execlp%3F%5Cs*%5C%28%5B%5E%2C%5D%2B%2C%5Cs*NULL&literal=0
[8] https://lore.kernel.org/lkml/20220131144352.GE16385@xsang-OptiPlex-9020/
In the Linux kernel, the following vulnerability has been resolved:
mmc: core: use sysfs_emit() instead of sprintf()
sprintf() (still used in the MMC core for the sysfs output) is vulnerable
to the buffer overflow. Use the new-fangled sysfs_emit() instead.
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
LSM: general protection fault in legacy_parse_param
The usual LSM hook "bail on fail" scheme doesn't work for cases where
a security module may return an error code indicating that it does not
recognize an input. In this particular case Smack sees a mount option
that it recognizes, and returns 0. A call to a BPF hook follows, which
returns -ENOPARAM, which confuses the caller because Smack has processed
its data.
The SELinux hook incorrectly returns 1 on success. There was a time
when this was correct, however the current expectation is that it
return 0 on success. This is repaired.
In the Linux kernel, the following vulnerability has been resolved:
ext4: don't BUG if someone dirty pages without asking ext4 first
[un]pin_user_pages_remote is dirtying pages without properly warning
the file system in advance. A related race was noted by Jan Kara in
2018[1]; however, more recently instead of it being a very hard-to-hit
race, it could be reliably triggered by process_vm_writev(2) which was
discovered by Syzbot[2].
This is technically a bug in mm/gup.c, but arguably ext4 is fragile in
that if some other kernel subsystem dirty pages without properly
notifying the file system using page_mkwrite(), ext4 will BUG, while
other file systems will not BUG (although data will still be lost).
So instead of crashing with a BUG, issue a warning (since there may be
potential data loss) and just mark the page as clean to avoid
unprivileged denial of service attacks until the problem can be
properly fixed. More discussion and background can be found in the
thread starting at [2].
[1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
[2] https://lore.kernel.org/r/Yg0m6IjcNmfaSokM@google.com
In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix non-access data TLB cache flush faults
When a page is not present, we get non-access data TLB faults from
the fdc and fic instructions in flush_user_dcache_range_asm and
flush_user_icache_range_asm. When these occur, the cache line is
not invalidated and potentially we get memory corruption. The
problem was hidden by the nullification of the flush instructions.
These faults also affect performance. With pa8800/pa8900 processors,
there will be 32 faults per 4 KB page since the cache line is 128
bytes. There will be more faults with earlier processors.
The problem is fixed by using flush_cache_pages(). It does the flush
using a tmp alias mapping.
The flush_cache_pages() call in flush_cache_range() flushed too
large a range.
V2: Remove unnecessary preempt_disable() and preempt_enable() calls.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix ext4_mb_mark_bb() with flex_bg with fast_commit
In case of flex_bg feature (which is by default enabled), extents for
any given inode might span across blocks from two different block group.
ext4_mb_mark_bb() only reads the buffer_head of block bitmap once for the
starting block group, but it fails to read it again when the extent length
boundary overflows to another block group. Then in this below loop it
accesses memory beyond the block group bitmap buffer_head and results
into a data abort.
for (i = 0; i < clen; i++)
if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
already++;
This patch adds this functionality for checking block group boundary in
ext4_mb_mark_bb() and update the buffer_head(bitmap_bh) for every different
block group.
w/o this patch, I was easily able to hit a data access abort using Power platform.
<...>
[ 74.327662] EXT4-fs error (device loop3): ext4_mb_generate_buddy:1141: group 11, block bitmap and bg descriptor inconsistent: 21248 vs 23294 free clusters
[ 74.533214] EXT4-fs (loop3): shut down requested (2)
[ 74.536705] Aborting journal on device loop3-8.
[ 74.702705] BUG: Unable to handle kernel data access on read at 0xc00000005e980000
[ 74.703727] Faulting instruction address: 0xc0000000007bffb8
cpu 0xd: Vector: 300 (Data Access) at [c000000015db7060]
pc: c0000000007bffb8: ext4_mb_mark_bb+0x198/0x5a0
lr: c0000000007bfeec: ext4_mb_mark_bb+0xcc/0x5a0
sp: c000000015db7300
msr: 800000000280b033
dar: c00000005e980000
dsisr: 40000000
current = 0xc000000027af6880
paca = 0xc00000003ffd5200 irqmask: 0x03 irq_happened: 0x01
pid = 5167, comm = mount
<...>
enter ? for help
[c000000015db7380] c000000000782708 ext4_ext_clear_bb+0x378/0x410
[c000000015db7400] c000000000813f14 ext4_fc_replay+0x1794/0x2000
[c000000015db7580] c000000000833f7c do_one_pass+0xe9c/0x12a0
[c000000015db7710] c000000000834504 jbd2_journal_recover+0x184/0x2d0
[c000000015db77c0] c000000000841398 jbd2_journal_load+0x188/0x4a0
[c000000015db7880] c000000000804de8 ext4_fill_super+0x2638/0x3e10
[c000000015db7a40] c0000000005f8404 get_tree_bdev+0x2b4/0x350
[c000000015db7ae0] c0000000007ef058 ext4_get_tree+0x28/0x40
[c000000015db7b00] c0000000005f6344 vfs_get_tree+0x44/0x100
[c000000015db7b70] c00000000063c408 path_mount+0xdd8/0xe70
[c000000015db7c40] c00000000063c8f0 sys_mount+0x450/0x550
[c000000015db7d50] c000000000035770 system_call_exception+0x4a0/0x4e0
[c000000015db7e10] c00000000000c74c system_call_common+0xec/0x250