On F5 BIG-IP versions 13.0.0 - 13.1.0.3 or 12.0.0 - 12.1.3.1, TMM may restart when processing a specifically crafted page through a virtual server with an associated PEM policy that has content insertion as an action.
In versions 13.0.0, 12.0.0-12.1.3, or 11.6.0-11.6.2, an F5 BIG-IP virtual server using the URL categorization feature may cause the Traffic Management Microkernel (TMM) to produce a core file when it receives malformed URLs during categorization.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, GTM, Link Controller, PEM and Websafe software version 13.0.0, 12.0.0 to 12.1.2, 11.6.0 to 11.6.1 and 11.5.0 - 11.5.4, an undisclosed sequence of packets sent to BIG-IP High Availability state mirror listeners (primary and/or secondary IP) may cause TMM to restart.
On the BIG-IP 2000s, 2200s, 4000s, 4200v, i5600, i5800, i7600, i7800, i10600,i10800, and VIPRION 4450 blades, running version 11.5.0, 11.5.1, 11.5.2, 11.5.3, 11.5.4, 11.6.0, 11.6.1, 12.0.0, 12.1.0, 12.1.1 or 12.1.2 of BIG-IP LTM, AAM, AFM, Analytics, ASM, DNS, GTM or PEM, an undisclosed sequence of packets sent to Virtual Servers with client or server SSL profiles may cause disruption of data plane services.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, Edge Gateway, GTM, Link Controller, PEM, WebAccelerator and WebSafe software version 13.0.0, 12.0.0 - 12.1.2, 11.6.0 - 11.6.1 and 11.5.0 - 11.5.4, in some circumstances, Traffic Management Microkernel (TMM) does not properly handle certain malformed TLS1.2 records, which allows remote attackers to cause a denial-of-service (DoS) or possible remote command execution on the BIG-IP system.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, GTM, Link Controller, PEM and Websafe software version 13.0.0, 12.0.0 to 12.1.2 and 11.5.1 to 11.6.1, under limited circumstances connections handled by a Virtual Server with an associated SOCKS profile may not be properly cleaned up, potentially leading to resource starvation. Connections may be left in the connection table which then can only be removed by restarting TMM. Over time this may lead to the BIG-IP being unable to process further connections.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, GTM, Link Controller, PEM and Websafe software version 12.0.0 to 12.1.1, 11.6.0 to 11.6.1, 11.5.0 - 11.5.4, virtual servers with a configuration using the HTTP Explicit Proxy functionality and/or SOCKS profile are vulnerable to an unauthenticated, remote attack that allows modification of BIG-IP system configuration, extraction of sensitive system files, and/or possible remote command execution on the BIG-IP system.
F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, GTM, Link Controller, PEM, Websafe software version 12.0.0 to 12.1.2, 11.6.0 to 11.6.1 are vulnerable to a denial of service attack when the MPTCP option is enabled on a virtual server. Data plane is vulnerable when using the MPTCP option of a TCP profile. There is no control plane exposure. An attacker may be able to disrupt services by causing TMM to restart hence temporarily failing to process traffic.
In F5 BIG-IP AAM and PEM software version 12.0.0 to 12.1.1, 11.6.0 to 11.6.1, 11.4.1 to 11.5.4, a remote attacker may create maliciously crafted HTTP request to cause Traffic Management Microkernel (TMM) to restart and temporarily fail to process traffic. This issue is exposed on virtual servers using a Policy Enforcement profile or a Web Acceleration profile. Systems that do not have BIG-IP AAM module provisioned are not vulnerable. The Traffic Management Microkernel (TMM) may restart and temporarily fail to process traffic. Systems that do not have BIG-IP AAM or PEM module provisioned are not vulnerable.
In F5 BIG-IP LTM, AAM, AFM, Analytics, APM, ASM, DNS, Edge Gateway, GTM, Link Controller, PEM, WebAccelerator software version 12.0.0 - 12.1.2, 11.6.0 - 11.6.1, 11.4.0 - 11.5.4, 11.2.1, when ConfigSync is configured, attackers on adjacent networks may be able to bypass the TLS protections usually used to encrypted and authenticate connections to mcpd. This vulnerability may allow remote attackers to cause a denial-of-service (DoS) attack via resource exhaustion.