Tor before 0.2.1.29 and 0.2.2.x before 0.2.2.21-alpha does not properly manage key data in memory, which might allow local users to obtain sensitive information by leveraging the ability to read memory that was previously used by a different process.
Heap-based buffer overflow in Tor before 0.2.1.29 and 0.2.2.x before 0.2.2.21-alpha allows remote attackers to cause a denial of service (memory corruption and application crash) or possibly execute arbitrary code via unspecified vectors.
Tor before 0.2.1.29 and 0.2.2.x before 0.2.2.21-alpha makes calls to Libevent within Libevent log handlers, which might allow remote attackers to cause a denial of service (daemon crash) via vectors that trigger certain log messages.
Tor before 0.2.1.29 and 0.2.2.x before 0.2.2.21-alpha does not properly check the amount of compression in zlib-compressed data, which allows remote attackers to cause a denial of service via a large compression factor.
Heap-based buffer overflow in Tor before 0.2.1.28 and 0.2.2.x before 0.2.2.20-alpha allows remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code via unspecified vectors.
Tor before 0.2.1.22, and 0.2.2.x before 0.2.2.7-alpha, uses deprecated identity keys for certain directory authorities, which makes it easier for man-in-the-middle attackers to compromise the anonymity of traffic sources and destinations.
Tor 0.2.2.x before 0.2.2.7-alpha, when functioning as a directory mirror, does not prevent logging of the client IP address upon detection of erroneous client behavior, which might make it easier for local users to discover the identities of clients in opportunistic circumstances by reading log files.
Tor before 0.2.1.22, and 0.2.2.x before 0.2.2.7-alpha, when functioning as a bridge directory authority, allows remote attackers to obtain sensitive information about bridge identities and bridge descriptors via a dbg-stability.txt directory query.