In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: vhci: Prevent use-after-free by removing debugfs files early
Move the creation of debugfs files into a dedicated function, and ensure
they are explicitly removed during vhci_release(), before associated
data structures are freed.
Previously, debugfs files such as "force_suspend", "force_wakeup", and
others were created under hdev->debugfs but not removed in
vhci_release(). Since vhci_release() frees the backing vhci_data
structure, any access to these files after release would result in
use-after-free errors.
Although hdev->debugfs is later freed in hci_release_dev(), user can
access files after vhci_data is freed but before hdev->debugfs is
released.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix list corruption after hardware restart
Since stations are recreated from scratch, all lists that wcids are added
to must be cleared before calling ieee80211_restart_hw.
Set wcid->sta = 0 for each wcid entry in order to ensure that they are
not added again before they are ready.
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work
The brcmf_btcoex_detach() only shuts down the btcoex timer, if the
flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which
runs as timer handler, sets timer_on to false. This creates critical
race conditions:
1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc()
is executing, it may observe timer_on as false and skip the call to
timer_shutdown_sync().
2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info
worker after the cancel_work_sync() has been executed, resulting in
use-after-free bugs.
The use-after-free bugs occur in two distinct scenarios, depending on
the timing of when the brcmf_btcoex_info struct is freed relative to
the execution of its worker thread.
Scenario 1: Freed before the worker is scheduled
The brcmf_btcoex_info is deallocated before the worker is scheduled.
A race condition can occur when schedule_work(&bt_local->work) is
called after the target memory has been freed. The sequence of events
is detailed below:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... |
kfree(cfg->btcoex); // FREE |
| schedule_work(&bt_local->work); // USE
Scenario 2: Freed after the worker is scheduled
The brcmf_btcoex_info is freed after the worker has been scheduled
but before or during its execution. In this case, statements within
the brcmf_btcoex_handler() — such as the container_of macro and
subsequent dereferences of the brcmf_btcoex_info object will cause
a use-after-free access. The following timeline illustrates this
scenario:
CPU0 | CPU1
brcmf_btcoex_detach | brcmf_btcoex_timerfunc
| bt_local->timer_on = false;
if (cfg->btcoex->timer_on) |
... |
cancel_work_sync(); |
... | schedule_work(); // Reschedule
|
kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker
/* | btci = container_of(....); // USE
The kfree() above could | ...
also occur at any point | btci-> // USE
during the worker's execution|
*/ |
To resolve the race conditions, drop the conditional check and call
timer_shutdown_sync() directly. It can deactivate the timer reliably,
regardless of its current state. Once stopped, the timer_on state is
then set to false.
In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: fix use-after-free bugs causing by ptp_ocp_watchdog
The ptp_ocp_detach() only shuts down the watchdog timer if it is
pending. However, if the timer handler is already running, the
timer_delete_sync() is not called. This leads to race conditions
where the devlink that contains the ptp_ocp is deallocated while
the timer handler is still accessing it, resulting in use-after-free
bugs. The following details one of the race scenarios.
(thread 1) | (thread 2)
ptp_ocp_remove() |
ptp_ocp_detach() | ptp_ocp_watchdog()
if (timer_pending(&bp->watchdog))| bp = timer_container_of()
timer_delete_sync() |
|
devlink_free(devlink) //free |
| bp-> //use
Resolve this by unconditionally calling timer_delete_sync() to ensure
the timer is reliably deactivated, preventing any access after free.
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD in {arp,neigh}_reduce() when using nexthop objects
When the "proxy" option is enabled on a VXLAN device, the device will
suppress ARP requests and IPv6 Neighbor Solicitation messages if it is
able to reply on behalf of the remote host. That is, if a matching and
valid neighbor entry is configured on the VXLAN device whose MAC address
is not behind the "any" remote (0.0.0.0 / ::).
The code currently assumes that the FDB entry for the neighbor's MAC
address points to a valid remote destination, but this is incorrect if
the entry is associated with an FDB nexthop group. This can result in a
NPD [1][3] which can be reproduced using [2][4].
Fix by checking that the remote destination exists before dereferencing
it.
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 4 UID: 0 PID: 365 Comm: arping Not tainted 6.17.0-rc2-virtme-g2a89cb21162c #2 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_xmit+0xb58/0x15f0
[...]
Call Trace:
<TASK>
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip nexthop add id 1 via 192.0.2.2 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 4789 proxy
ip neigh add 192.0.2.3 lladdr 00:11:22:33:44:55 nud perm dev vx0
bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10
arping -b -c 1 -s 192.0.2.1 -I vx0 192.0.2.3
[3]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 372 Comm: ndisc6 Not tainted 6.17.0-rc2-virtmne-g6ee90cb26014 #3 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1v996), BIOS 1.17.0-4.fc41 04/01/2x014
RIP: 0010:vxlan_xmit+0x803/0x1600
[...]
Call Trace:
<TASK>
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
ip6_finish_output2+0x210/0x6c0
ip6_finish_output+0x1af/0x2b0
ip6_mr_output+0x92/0x3e0
ip6_send_skb+0x30/0x90
rawv6_sendmsg+0xe6e/0x12e0
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f383422ec77
[4]
#!/bin/bash
ip address add 2001:db8:1::1/128 dev lo
ip nexthop add id 1 via 2001:db8:1::1 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 2001:db8:1::1 dstport 4789 proxy
ip neigh add 2001:db8:1::3 lladdr 00:11:22:33:44:55 nud perm dev vx0
bridge fdb add 00:11:22:33:44:55 dev vx0 self static nhid 10
ndisc6 -r 1 -s 2001:db8:1::1 -w 1 2001:db8:1::3 vx0
In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix NPD when refreshing an FDB entry with a nexthop object
VXLAN FDB entries can point to either a remote destination or an FDB
nexthop group. The latter is usually used in EVPN deployments where
learning is disabled.
However, when learning is enabled, an incoming packet might try to
refresh an FDB entry that points to an FDB nexthop group and therefore
does not have a remote. Such packets should be dropped, but they are
only dropped after dereferencing the non-existent remote, resulting in a
NPD [1] which can be reproduced using [2].
Fix by dropping such packets earlier. Remove the misleading comment from
first_remote_rcu().
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
CPU: 13 UID: 0 PID: 361 Comm: mausezahn Not tainted 6.17.0-rc1-virtme-g9f6b606b6b37 #1 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc41 04/01/2014
RIP: 0010:vxlan_snoop+0x98/0x1e0
[...]
Call Trace:
<TASK>
vxlan_encap_bypass+0x209/0x240
encap_bypass_if_local+0xb1/0x100
vxlan_xmit_one+0x1375/0x17e0
vxlan_xmit+0x6b4/0x15f0
dev_hard_start_xmit+0x5d/0x1c0
__dev_queue_xmit+0x246/0xfd0
packet_sendmsg+0x113a/0x1850
__sock_sendmsg+0x38/0x70
__sys_sendto+0x126/0x180
__x64_sys_sendto+0x24/0x30
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x4b/0x53
[2]
#!/bin/bash
ip address add 192.0.2.1/32 dev lo
ip address add 192.0.2.2/32 dev lo
ip nexthop add id 1 via 192.0.2.3 fdb
ip nexthop add id 10 group 1 fdb
ip link add name vx0 up type vxlan id 10010 local 192.0.2.1 dstport 12345 localbypass
ip link add name vx1 up type vxlan id 10020 local 192.0.2.2 dstport 54321 learning
bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 192.0.2.2 port 54321 vni 10020
bridge fdb add 00:aa:bb:cc:dd:ee dev vx1 self static nhid 10
mausezahn vx0 -a 00:aa:bb:cc:dd:ee -b 00:11:22:33:44:55 -c 1 -q
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix lockdep assertion on sync reset unload event
Fix lockdep assertion triggered during sync reset unload event. When the
sync reset flow is initiated using the devlink reload fw_activate
option, the PF already holds the devlink lock while handling unload
event. In this case, delegate sync reset unload event handling back to
the devlink callback process to avoid double-locking and resolve the
lockdep warning.
Kernel log:
WARNING: CPU: 9 PID: 1578 at devl_assert_locked+0x31/0x40
[...]
Call Trace:
<TASK>
mlx5_unload_one_devl_locked+0x2c/0xc0 [mlx5_core]
mlx5_sync_reset_unload_event+0xaf/0x2f0 [mlx5_core]
process_one_work+0x222/0x640
worker_thread+0x199/0x350
kthread+0x10b/0x230
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x8e/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
trace/fgraph: Fix the warning caused by missing unregister notifier
This warning was triggered during testing on v6.16:
notifier callback ftrace_suspend_notifier_call already registered
WARNING: CPU: 2 PID: 86 at kernel/notifier.c:23 notifier_chain_register+0x44/0xb0
...
Call Trace:
<TASK>
blocking_notifier_chain_register+0x34/0x60
register_ftrace_graph+0x330/0x410
ftrace_profile_write+0x1e9/0x340
vfs_write+0xf8/0x420
? filp_flush+0x8a/0xa0
? filp_close+0x1f/0x30
? do_dup2+0xaf/0x160
ksys_write+0x65/0xe0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
When writing to the function_profile_enabled interface, the notifier was
not unregistered after start_graph_tracing failed, causing a warning the
next time function_profile_enabled was written.
Fixed by adding unregister_pm_notifier in the exception path.
In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix memory corruption when FW resources change during ifdown
bnxt_set_dflt_rings() assumes that it is always called before any TC has
been created. So it doesn't take bp->num_tc into account and assumes
that it is always 0 or 1.
In the FW resource or capability change scenario, the FW will return
flags in bnxt_hwrm_if_change() that will cause the driver to
reinitialize and call bnxt_cancel_reservations(). This will lead to
bnxt_init_dflt_ring_mode() calling bnxt_set_dflt_rings() and bp->num_tc
may be greater than 1. This will cause bp->tx_ring[] to be sized too
small and cause memory corruption in bnxt_alloc_cp_rings().
Fix it by properly scaling the TX rings by bp->num_tc in the code
paths mentioned above. Add 2 helper functions to determine
bp->tx_nr_rings and bp->tx_nr_rings_per_tc.