In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved:
dm-stripe: fix a possible integer overflow
There's a possible integer overflow in stripe_io_hints if we have too
large chunk size. Test if the overflow happened, and if it did, don't set
limits->io_min and limits->io_opt;
In the Linux kernel, the following vulnerability has been resolved:
udf: Do not bother merging very long extents
When merging very long extents we try to push as much length as possible
to the first extent. However this is unnecessarily complicated and not
really worth the trouble. Furthermore there was a bug in the logic
resulting in corrupting extents in the file as syzbot reproducer shows.
So just don't bother with the merging of extents that are too long
together.
In the Linux kernel, the following vulnerability has been resolved:
start_kernel: Add __no_stack_protector function attribute
Back during the discussion of
commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try")
we discussed the need for a function attribute to control the omission
of stack protectors on a per-function basis; at the time Clang had
support for no_stack_protector but GCC did not. This was fixed in
gcc-11. Now that the function attribute is available, let's start using
it.
Callers of boot_init_stack_canary need to use this function attribute
unless they're compiled with -fno-stack-protector, otherwise the canary
stored in the stack slot of the caller will differ upon the call to
boot_init_stack_canary. This will lead to a call to __stack_chk_fail()
then panic.
In the Linux kernel, the following vulnerability has been resolved:
lib: cpu_rmap: Avoid use after free on rmap->obj array entries
When calling irq_set_affinity_notifier() with NULL at the notify
argument, it will cause freeing of the glue pointer in the
corresponding array entry but will leave the pointer in the array. A
subsequent call to free_irq_cpu_rmap() will try to free this entry again
leading to possible use after free.
Fix that by setting NULL to the array entry and checking that we have
non-zero at the array entry when iterating over the array in
free_irq_cpu_rmap().
The current code does not suffer from this since there are no cases
where irq_set_affinity_notifier(irq, NULL) (note the NULL passed for the
notify arg) is called, followed by a call to free_irq_cpu_rmap() so we
don't hit and issue. Subsequent patches in this series excersize this
flow, hence the required fix.
In the Linux kernel, the following vulnerability has been resolved:
ubi: ubi_wl_put_peb: Fix infinite loop when wear-leveling work failed
Following process will trigger an infinite loop in ubi_wl_put_peb():
ubifs_bgt ubi_bgt
ubifs_leb_unmap
ubi_leb_unmap
ubi_eba_unmap_leb
ubi_wl_put_peb wear_leveling_worker
e1 = rb_entry(rb_first(&ubi->used)
e2 = get_peb_for_wl(ubi)
ubi_io_read_vid_hdr // return err (flash fault)
out_error:
ubi->move_from = ubi->move_to = NULL
wl_entry_destroy(ubi, e1)
ubi->lookuptbl[e->pnum] = NULL
retry:
e = ubi->lookuptbl[pnum]; // return NULL
if (e == ubi->move_from) { // NULL == NULL gets true
goto retry; // infinite loop !!!
$ top
PID USER PR NI VIRT RES SHR S %CPU %MEM COMMAND
7676 root 20 0 0 0 0 R 100.0 0.0 ubifs_bgt0_0
Fix it by:
1) Letting ubi_wl_put_peb() returns directly if wearl leveling entry has
been removed from 'ubi->lookuptbl'.
2) Using 'ubi->wl_lock' protecting wl entry deletion to preventing an
use-after-free problem for wl entry in ubi_wl_put_peb().
Fetch a reproducer in [Link].
In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla4xxx: Add length check when parsing nlattrs
There are three places that qla4xxx parses nlattrs:
- qla4xxx_set_chap_entry()
- qla4xxx_iface_set_param()
- qla4xxx_sysfs_ddb_set_param()
and each of them directly converts the nlattr to specific pointer of
structure without length checking. This could be dangerous as those
attributes are not validated and a malformed nlattr (e.g., length 0) could
result in an OOB read that leaks heap dirty data.
Add the nla_len check before accessing the nlattr data and return EINVAL if
the length check fails.