In the Linux kernel, the following vulnerability has been resolved:
start_kernel: Add __no_stack_protector function attribute
Back during the discussion of
commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try")
we discussed the need for a function attribute to control the omission
of stack protectors on a per-function basis; at the time Clang had
support for no_stack_protector but GCC did not. This was fixed in
gcc-11. Now that the function attribute is available, let's start using
it.
Callers of boot_init_stack_canary need to use this function attribute
unless they're compiled with -fno-stack-protector, otherwise the canary
stored in the stack slot of the caller will differ upon the call to
boot_init_stack_canary. This will lead to a call to __stack_chk_fail()
then panic.
In the Linux kernel, the following vulnerability has been resolved:
lib: cpu_rmap: Avoid use after free on rmap->obj array entries
When calling irq_set_affinity_notifier() with NULL at the notify
argument, it will cause freeing of the glue pointer in the
corresponding array entry but will leave the pointer in the array. A
subsequent call to free_irq_cpu_rmap() will try to free this entry again
leading to possible use after free.
Fix that by setting NULL to the array entry and checking that we have
non-zero at the array entry when iterating over the array in
free_irq_cpu_rmap().
The current code does not suffer from this since there are no cases
where irq_set_affinity_notifier(irq, NULL) (note the NULL passed for the
notify arg) is called, followed by a call to free_irq_cpu_rmap() so we
don't hit and issue. Subsequent patches in this series excersize this
flow, hence the required fix.
In the Linux kernel, the following vulnerability has been resolved:
ubi: ubi_wl_put_peb: Fix infinite loop when wear-leveling work failed
Following process will trigger an infinite loop in ubi_wl_put_peb():
ubifs_bgt ubi_bgt
ubifs_leb_unmap
ubi_leb_unmap
ubi_eba_unmap_leb
ubi_wl_put_peb wear_leveling_worker
e1 = rb_entry(rb_first(&ubi->used)
e2 = get_peb_for_wl(ubi)
ubi_io_read_vid_hdr // return err (flash fault)
out_error:
ubi->move_from = ubi->move_to = NULL
wl_entry_destroy(ubi, e1)
ubi->lookuptbl[e->pnum] = NULL
retry:
e = ubi->lookuptbl[pnum]; // return NULL
if (e == ubi->move_from) { // NULL == NULL gets true
goto retry; // infinite loop !!!
$ top
PID USER PR NI VIRT RES SHR S %CPU %MEM COMMAND
7676 root 20 0 0 0 0 R 100.0 0.0 ubifs_bgt0_0
Fix it by:
1) Letting ubi_wl_put_peb() returns directly if wearl leveling entry has
been removed from 'ubi->lookuptbl'.
2) Using 'ubi->wl_lock' protecting wl entry deletion to preventing an
use-after-free problem for wl entry in ubi_wl_put_peb().
Fetch a reproducer in [Link].
In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla4xxx: Add length check when parsing nlattrs
There are three places that qla4xxx parses nlattrs:
- qla4xxx_set_chap_entry()
- qla4xxx_iface_set_param()
- qla4xxx_sysfs_ddb_set_param()
and each of them directly converts the nlattr to specific pointer of
structure without length checking. This could be dangerous as those
attributes are not validated and a malformed nlattr (e.g., length 0) could
result in an OOB read that leaks heap dirty data.
Add the nla_len check before accessing the nlattr data and return EINVAL if
the length check fails.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix potential NULL pointer dereference
Klocwork tool reported 'cur_dsd' may be dereferenced. Add fix to validate
pointer before dereferencing the pointer.
In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel.