In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix deadlock in nilfs_count_free_blocks()
A semaphore deadlock can occur if nilfs_get_block() detects metadata
corruption while locating data blocks and a superblock writeback occurs at
the same time:
task 1 task 2
------ ------
* A file operation *
nilfs_truncate()
nilfs_get_block()
down_read(rwsem A) <--
nilfs_bmap_lookup_contig()
... generic_shutdown_super()
nilfs_put_super()
* Prepare to write superblock *
down_write(rwsem B) <--
nilfs_cleanup_super()
* Detect b-tree corruption * nilfs_set_log_cursor()
nilfs_bmap_convert_error() nilfs_count_free_blocks()
__nilfs_error() down_read(rwsem A) <--
nilfs_set_error()
down_write(rwsem B) <--
*** DEADLOCK ***
Here, nilfs_get_block() readlocks rwsem A (= NILFS_MDT(dat_inode)->mi_sem)
and then calls nilfs_bmap_lookup_contig(), but if it fails due to metadata
corruption, __nilfs_error() is called from nilfs_bmap_convert_error()
inside the lock section.
Since __nilfs_error() calls nilfs_set_error() unless the filesystem is
read-only and nilfs_set_error() attempts to writelock rwsem B (=
nilfs->ns_sem) to write back superblock exclusively, hierarchical lock
acquisition occurs in the order rwsem A -> rwsem B.
Now, if another task starts updating the superblock, it may writelock
rwsem B during the lock sequence above, and can deadlock trying to
readlock rwsem A in nilfs_count_free_blocks().
However, there is actually no need to take rwsem A in
nilfs_count_free_blocks() because it, within the lock section, only reads
a single integer data on a shared struct with
nilfs_sufile_get_ncleansegs(). This has been the case after commit
aa474a220180 ("nilfs2: add local variable to cache the number of clean
segments"), that is, even before this bug was introduced.
So, this resolves the deadlock problem by just not taking the semaphore in
nilfs_count_free_blocks().
In the Linux kernel, the following vulnerability has been resolved:
scsi: scsi_transport_sas: Fix error handling in sas_phy_add()
If transport_add_device() fails in sas_phy_add(), the kernel will crash
trying to delete the device in transport_remove_device() called from
sas_remove_host().
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000108
CPU: 61 PID: 42829 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc1+ #173
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : device_del+0x54/0x3d0
lr : device_del+0x37c/0x3d0
Call trace:
device_del+0x54/0x3d0
attribute_container_class_device_del+0x28/0x38
transport_remove_classdev+0x6c/0x80
attribute_container_device_trigger+0x108/0x110
transport_remove_device+0x28/0x38
sas_phy_delete+0x30/0x60 [scsi_transport_sas]
do_sas_phy_delete+0x6c/0x80 [scsi_transport_sas]
device_for_each_child+0x68/0xb0
sas_remove_children+0x40/0x50 [scsi_transport_sas]
sas_remove_host+0x20/0x38 [scsi_transport_sas]
hisi_sas_remove+0x40/0x68 [hisi_sas_main]
hisi_sas_v2_remove+0x20/0x30 [hisi_sas_v2_hw]
platform_remove+0x2c/0x60
Fix this by checking and handling return value of transport_add_device()
in sas_phy_add().
In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition
In the ssi_protocol_probe() function, &ssi->work is bound with
ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function
within the ssip_pn_ops structure is capable of starting the
work.
If we remove the module which will call ssi_protocol_remove()
to make a cleanup, it will free ssi through kfree(ssi),
while the work mentioned above will be used. The sequence
of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ssip_xmit_work
ssi_protocol_remove |
kfree(ssi); |
| struct hsi_client *cl = ssi->cl;
| // use ssi
Fix it by ensuring that the work is canceled before proceeding
with the cleanup in ssi_protocol_remove().
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix OOB read when checking dotdot dir
Mounting a corrupted filesystem with directory which contains '.' dir
entry with rec_len == block size results in out-of-bounds read (later
on, when the corrupted directory is removed).
ext4_empty_dir() assumes every ext4 directory contains at least '.'
and '..' as directory entries in the first data block. It first loads
the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry()
and then uses its rec_len member to compute the location of '..' dir
entry (in ext4_next_entry). It assumes the '..' dir entry fits into the
same data block.
If the rec_len of '.' is precisely one block (4KB), it slips through the
sanity checks (it is considered the last directory entry in the data
block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the
memory slot allocated to the data block. The following call to
ext4_check_dir_entry() on new value of de then dereferences this pointer
which results in out-of-bounds mem access.
Fix this by extending __ext4_check_dir_entry() to check for '.' dir
entries that reach the end of data block. Make sure to ignore the phony
dir entries for checksum (by checking name_len for non-zero).
Note: This is reported by KASAN as use-after-free in case another
structure was recently freed from the slot past the bound, but it is
really an OOB read.
This issue was found by syzkaller tool.
Call Trace:
[ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710
[ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375
[ 38.595158]
[ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1
[ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 38.595304] Call Trace:
[ 38.595308] <TASK>
[ 38.595311] dump_stack_lvl+0xa7/0xd0
[ 38.595325] print_address_description.constprop.0+0x2c/0x3f0
[ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595349] print_report+0xaa/0x250
[ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595368] ? kasan_addr_to_slab+0x9/0x90
[ 38.595378] kasan_report+0xab/0xe0
[ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595400] __ext4_check_dir_entry+0x67e/0x710
[ 38.595410] ext4_empty_dir+0x465/0x990
[ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10
[ 38.595432] ext4_rmdir.part.0+0x29a/0xd10
[ 38.595441] ? __dquot_initialize+0x2a7/0xbf0
[ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10
[ 38.595464] ? __pfx___dquot_initialize+0x10/0x10
[ 38.595478] ? down_write+0xdb/0x140
[ 38.595487] ? __pfx_down_write+0x10/0x10
[ 38.595497] ext4_rmdir+0xee/0x140
[ 38.595506] vfs_rmdir+0x209/0x670
[ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190
[ 38.595529] do_rmdir+0x363/0x3c0
[ 38.595537] ? __pfx_do_rmdir+0x10/0x10
[ 38.595544] ? strncpy_from_user+0x1ff/0x2e0
[ 38.595561] __x64_sys_unlinkat+0xf0/0x130
[ 38.595570] do_syscall_64+0x5b/0x180
[ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e
In the Linux kernel, the following vulnerability has been resolved:
can: dev: can_restart: fix use after free bug
After calling netif_rx_ni(skb), dereferencing skb is unsafe.
Especially, the can_frame cf which aliases skb memory is accessed
after the netif_rx_ni() in:
stats->rx_bytes += cf->len;
Reordering the lines solves the issue.
In the Linux kernel, the following vulnerability has been resolved:
can: dev: can_get_echo_skb(): prevent call to kfree_skb() in hard IRQ context
If a driver calls can_get_echo_skb() during a hardware IRQ (which is often, but
not always, the case), the 'WARN_ON(in_irq)' in
net/core/skbuff.c#skb_release_head_state() might be triggered, under network
congestion circumstances, together with the potential risk of a NULL pointer
dereference.
The root cause of this issue is the call to kfree_skb() instead of
dev_kfree_skb_irq() in net/core/dev.c#enqueue_to_backlog().
This patch prevents the skb to be freed within the call to netif_rx() by
incrementing its reference count with skb_get(). The skb is finally freed by
one of the in-irq-context safe functions: dev_consume_skb_any() or
dev_kfree_skb_any(). The "any" version is used because some drivers might call
can_get_echo_skb() in a normal context.
The reason for this issue to occur is that initially, in the core network
stack, loopback skb were not supposed to be received in hardware IRQ context.
The CAN stack is an exeption.
This bug was previously reported back in 2017 in [1] but the proposed patch
never got accepted.
While [1] directly modifies net/core/dev.c, we try to propose here a
smoother modification local to CAN network stack (the assumption
behind is that only CAN devices are affected by this issue).
[1] http://lore.kernel.org/r/57a3ffb6-3309-3ad5-5a34-e93c3fe3614d@cetitec.com
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix null pointer dereference in alloc_preauth_hash()
The Client send malformed smb2 negotiate request. ksmbd return error
response. Subsequently, the client can send smb2 session setup even
thought conn->preauth_info is not allocated.
This patch add KSMBD_SESS_NEED_SETUP status of connection to ignore
session setup request if smb2 negotiate phase is not complete.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate zero num_subauth before sub_auth is accessed
Access psid->sub_auth[psid->num_subauth - 1] without checking
if num_subauth is non-zero leads to an out-of-bounds read.
This patch adds a validation step to ensure num_subauth != 0
before sub_auth is accessed.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix session use-after-free in multichannel connection
There is a race condition between session setup and
ksmbd_sessions_deregister. The session can be freed before the connection
is added to channel list of session.
This patch check reference count of session before freeing it.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in ksmbd_sessions_deregister()
In multichannel mode, UAF issue can occur in session_deregister
when the second channel sets up a session through the connection of
the first channel. session that is freed through the global session
table can be accessed again through ->sessions of connection.